
SEPTEMBER 1995 Delphi INFORMANT ▲ 1

ON THE COVER

8 The TSlideBar Component — Robert Vivrette
Mr Vivrette gets our component issue off to a rollicking start
with his fully-implemented SlideBar. Not only will you come
away with a useful and attractive Windows control, you’ll
learn how it was built. Many techniques are presented along
the way including: handling focus, handling keyboard and
mouse input, painting a control’s canvas, storing images in a
resource file, and more.

16 A Dynamic Toolbar — Gary Entsminger
Here’s a floating Toolbar that your application’s users can
modify on-the-fly — adding and deleting buttons as the
need arises. Mr Entsminger tackles several topics while dis-
cussing the component, including: unit variables, the
FormCreate event, exception handling, TNotifyEvent, the
Sender parameter, hints, glyphs, the API ShellExecute
function, and more. Download it and put it to use!

41 A Stopwatch Component — Richard Holmes
More awesome components! And this one is not for the faint
of heart. Mr Holmes uses embedded assembly language and
in-line code to access the Windows Virtual Timer Device to
create an extraordinarily precise software stopwatch. Even if
you’re not up to writing assembler, the Stopwatch compo-
nents are useful as they come — one is even designed
specifically for profiling programs.

September 1995 - Volume 1, Number 5

Creating
Components

Assembling Delphi’s Building Blocks

Cover Art By: Victor Kongkadee

FEATURES

23 Informant Spotlight — Thomas Miller
This month’s “Spotlight” features a blow-by-blow com-
parison of Delphi and PowerBuilder from a recent convert.
A long-time PB developer, Mr Miller puts both products
through their paces before concluding “It’s time to leave
PowerBuilder behind.”

31 DBNavigator — Cary Jensen, Ph.D.
In this month’s DBNavigator, Mr Jensen concludes a two-
part series on data validation. This time the focus is on
validating input for data-aware TField components. Topics
discussed include: creating input masks, the Required
property, and the OnValidate and BeforePost events.

36 OP Basics — Charles Calvert
It’s the second of a three-part series on Object Pascal
strings. This month Mr Calvert shares some string-han-
dling techniques (including how to strip trailing blanks),
and introduces the Object Pascal Length, GetDate, Delete,
FillChar, Copy, and Move functions.

DEPARTMENTS

2 Delphi Tools
5 Newsline

SEPTEMBER 1995

Delphi
T O O L S

New Products
and Solutions

New Delphi Books

Developing Windows
Applications Using Delphi

Paul Penrod
John Wiley & Sons

ISBN: 0-471-11017-5
Developing introduces object-

oriented programming techniques,
and then develops a Windows

application step-by-step. It covers
topics such as Object Pascal, GUI,
debugging and testing applications,
event handling, exception handling,
error handling, using the run-time

libraries, and compiling executables.
Price: US$29.95 (353 pages)

Phone: (212) 850-6630

Delphi: A Developer’s Guide
Vince Kellen & Bill Todd

M&T Books
ISBN: 1-55851-455-4

Delphi guides readers through
every aspect of Delphi, including:
Delphi’s database controls, VCL

components, the Borland
Database Engine, InterBase, SQL

Server, and object-oriented
programming and techniques.

Price: US$44.95
(820 pages, CD-ROM)
Phone: (800) 488-5233
Delphi Accounting Package Released

ColumbuSoft of Columbus,

OH has released Accounting for
Delphi, a series of general
accounting modules written
entirely in Object Pascal
(Delphi’s native language) and
sold with the source code.
Purchasers receive a license that
allows them to resell their com-
piled applications without addi-
tional royalties or fees.

Using the same fundamental
approach as previous
ColumbuSoft products,
Accounting for Delphi is a
batch-oriented, double-entry
system. The system provides
the means for Delphi develop-
ers to provide general account-
ing functionality that inte-
grates with their custom or
vertical market applications.

Accounting for Delphi
includes general ledger,
accounts payable, accounts
receivable, order entry, inven-
tory/purchasing, fixed assets,
payroll, and job costing mod-
ules. Each can be used alone
or with other modules with-
out changes to the code.
The source code includes

utility functions that can be
used in other applications,
including a reusable report
printer with integrated on-
screen preview. ReportSmith
or other report generators are
not required.

A free demonstration version is
available. It has several source
code files, and a developer’s help
file with technical documenta-
tion and file structures.
Price: US$500 for the first module,
US$250 for any additional modules.

Contact: ColumbuSoft, 1525 Norma
Road, Columbus, OH 43229

Phone: (800) 692-2150 or (614) 885-
7789

Fax: (614) 885-2077

E-mail: 76702.556@compuserve.com
New HeadConv 1.0: C DLL Header Converter Expert for Delphi

HeadConv 1.0, a C DLL

Header Converter Expert for
Delphi, is now available.
Targeted at the serious
Delphi developer, the
HeadConv Expert assists the
conversion of C DLL header
files to Delphi import units,
giving Delphi users access to
third-party C DLLs.
HeadConv has full support

for functions and procedures,
argument and return types (128
custom type conversions), and
generates implicit Delphi
import units. The expert is
integrated in the Delphi IDE,
simplifying the conversion
process by opening automati-
cally within the IDE. There is
limited (non-complex) support
for typedefs, structs, unions,
enums, and conditional compi-
lations. HeadConv cannot per-
form 100 percent of the con-
version, but offers major assis-
tance in converting C DLL
header files.

The shareware version of
HeadConv 1.0 is available on
CompuServe from the
Informant Forum (GO ICG-
FORUM: Library 14), and the
Delphi Forum (GO DELPHI:
Library 22). The file name is
HDCNV1.ZIP. All registered
users will receive source code
for the expert and stand-alone
EXEs (source code for the
parser is not provided), a
detailed WinHelp file, and the
capability of generating explic-
it import units. Registered
users may also submit feature
requests, and will receive regu-
lar updates by CompuServe
mail when available.

Price: US$25, registrations can be made
in the SWREG Forum (id #6533).

Contact: Bob Swart, P.O. Box 799,
5702 NP, Helmond, the Netherlands

E-mail: drbob@pi.net or 100434,2072
Delphi INFORMANT ▲ 2

SEPTEMBER 1995

New Delphi Books

Mastering Delphi
Marco Cantu

Sybex
ISBN: 0-7821-1739-2

This book introduces programmers
to all of Delphi’s features and

techniques, including the secrets of
the integrated development envi-
ronment, programming language,

the custom components, and
Windows programming in general.
Topics covered include OLE, DDE,
DLL, and graphics. The companion

disk contains the source code to
the examples from the book and

an assortment of utilities.
Price: US$39.99

(1,500 pages, CD)
Phone: (510) 523-8233

Delphi
T O O L S

New Products
and Solutions
ProtoView Releases Delphi Tools

ProtoView Development

Corporation of Cranbury, NJ
has released ProtoView
Interface Component Set
(PICS) version 1.5 for Delphi,
a DLL/VBX controls toolkit.
PICS is a collection of
Windows user-interface
objects for creating Delphi
forms. The PICS Interface
Component Set includes a
hierarchical list box with mul-
tiple sort levels, volume dial,
font selection, date, multi-
directional button, numeric
edit, percent bar, time, and
icon/bitmap button controls.

PICS includes design-time
visual setting through the
Delphi Object Inspector, node
searching functions, movable
sub-trees, expandable hierar-
chical levels, and bitmap
graphics for individual nodes.
In addition, PICS has a
data/calendar control that
allows graphical calendar selec-
tion and formatting of various
data values. Users can press a
date button and display a cal-
endar for the year specified.
PICS features a time control

that allows graphical 24-hour
time selection and formatting
with various styles, a numeric
edit control that allows picture
masking and scientific nota-
tion formats for numeric
input, and display styles
including LED readout,
counter, and normal.

Additional PICS for Delphi
controls include a multi-direc-
tional arrow control, a font
selection control, and a versa-
tile Push Button control.
Applications created using the
ProtoView Interface
Component Set may be dis-
tributed royalty-free.

Price: PICS 1.5 for Delphi is US$149;
source code, US$495.

Contact: ProtoView, 2540 Route 130,
Cranbury, NJ 08512

Phone: (800) 231-8588, or
(609) 655-5000

Fax: (609) 655-5353
New AccuSoft Image Format Library 5.0

AccuSoft Corporation of

Westborough, MA has
announced the release of
AccuSoft Image Format
Library 5.0, a raster imaging
DLL/VBX toolkit. It features
36 formats including TIFF,
JPEG, Photo CD, G3, G4,
PCX, GIF, DIB, WPG, BMP,
TGA, PICT, EPS, and WMF.
This library also features

advanced color reduction, 30
percent faster JPEG, automatic
thumbnails, new file informa-
tion function, file I/O replace-
ment, status bar through call
backs for functions, new scan-
ning features, and group three
and four raw data can be out-
put directly.

The AccuSoft VBX custom
control provides developers
with a complete imaging
toolkit, according to the com-
pany. There are no function
calls since everything is imple-
mented as properties and
events. This version also has
over 130 properties.

The VBX 32 has all features
of the VBX 16 but is two to
three times faster. Extra fea-
tures include anti-aliased dis-
play, advanced scanner con-
trol, and sub-degree rotation.
The VBX 32 Pro Gold has all

the features of the standard 32-
bit version but is two to four
times faster. It also supports
ImageAccel, large image, and
black and white, Group IV
and JPEG images. No special
drivers are required.

Prices: Starts at US$495.

Contact: AccuSoft Corporation, Two
Westborough Business Park, Westborough,
MA 01581

Phone: (508) 898-2770

Fax: (508) 898-9662
Delphi INFORMANT ▲ 3

SEPTEMBER 1995

Delphi Training

The 4GL Consulting Group
Ltd., of San Mateo, CA is offer-

ing beginning and advanced
courses in Delphi. Taught by a
developer, these classes cover
Object Pascal, object-oriented

programming, client/server
database applications and

Delphi components.
4GL will be offering classes
throughout this month. For

more information and
registration materials, contact
Ian Hart at (415) 348-4848

or fax (415) 349-4683.
The course instructor may be
contacted via CompuServe at

72143,467.

Delphi
T O O L S

New Products
and Solutions
SilverWare Windows Communications Tool Kit Ships

SilverWare Inc., of Dallas,

TX has announced the release
of The SilverWare Windows
Communications Tool Kit ver-
sion 5.01, a multi-language
communication library for
Microsoft Windows. The
library is a Windows dynamic
link library (DLL) accessible
from any Windows language or
program that can make FAR
PASCAL function calls and
pass 16- and 32-bit parameters
by reference and value. It offers
complete support for the fol-
lowing languages: Object
Pascal, ObjectPAL, C/C++,
CA-Visual Objects, Clarion for
Windows, Clip4Win, Visual
dBASE, FiveWin, Power
Builder, Turbo Pascal for
Windows, and Visual Basic.
The SilverWare Windows

Communications Tool Kit has
built-in, high-level dialog box
functions to decrease develop-
ment time. These dialog box
functions enable developers to
prompt users for COM port
selection, UART settings, auto
dialer, modem defaults, file
transfer options, and more,
with a single function call.

It also features: low/high
level support, beyond
COM1/COM2, multi COM
I/O boards, hardware/software
flow control, file transfers,
Smartmodem support, auto
dialer, high-level remote input,
immediate, transmit, asyn-
chronous timer functions,
comprehensive return code
system, documentation, and
examples for every language.
Price: US$299 (no royalties, includes
free technical support and a 30-day
money back guarantee).

Contact: SilverWare Inc., 3010 LBJ
Freeway, #740, Dallas, TX 75234

Phone: (214) 247-0131

Fax: (214) 406-9999

BBS: (214) 247-2177

WWW Internet Home Page URL:
http://rampages.onramp.net/~silver
Crystal Announces 32-bit Windows Versions

Crystal of Vancouver, BC has

announced a new 32-bit ver-
sion of Crystal Reports for
Windows 95 and Windows
NT. It will be available in both
16-bit and 32-bit versions, and
will run on all Windows plat-
forms including Windows 3.1.

Crystal Reports’ new features
include enhanced graphing
with customizable graph types,
import and export capabilities
for Lotus Notes, support for
Access 2.0 OLE picture fields,
and support for the Microsoft
Access Engine 2.5. It can
export to Excel 5.0, save report
options with a report (simpli-
fying report distribution), drill
down on graphs, and supports
the new Borland Database
Engine (IDAPI) and Paradox
5.0 for Windows.

According to the company,
developers can deliver report-
ing solutions for their 32-bit
environments using the 32-bit
Report Engine and OCX. In
addition, this version offers
the speed and stability of a
32-bit operating system, a
tabbed interface, and long-
file-name support.

Price: Crystal Reports Standard 4.5,
US$195; Crystal Reports Professional 4.5,
US$395; Upgrades to Crystal Reports
Professional 4.5 from previous versions of
Crystal Reports Standard or Professional
plus OEM versions of Crystal Reports,
US$199.

Contact: Crystal, a Seagate Software
Company, 1095 West Pender Street, 4th
Floor, Vancouver, BC, Canada V6E 2M6

Phone: (604) 681-3435, or (800)
877-2340

Fax: (604) 681-2934
Delphi INFORMANT ▲ 4

SEPTEMBER 1995

News
L I N E

Sep tember 1995

Virtual User Group Meets
The Informant CompuServe

Forum will host a Delphi Virtual
User Group meeting

Wednesday, Sept. 13, 1995 at
6 p.m. (PST). During this hour
long session, we’ll discuss the
Borland Conference and the

latest trends in the Delphi
Community. To access the

Informant CompuServe Forum
type “GO ICGFORUM” at any

CompuServe “GO” prompt.
Delphi 32: Supports OCXes, OLE Automation, and More

Scotts Valley, CA — Borland
International is scheduled to
unveil product details at their
San Diego conference regard-
ing their new 32-bit versions
of Delphi and Delphi
Client/Server. Delphi 32’s
enhancements include an opti-
mized 32-bit native code com-
piler, a Windows 95 user-
interface in the Delphi IDE, a
high performance 32-bit
Borland Database Engine and
SQL links, additional example
programs and demonstrations,
and improved documentation
(including a printed language
reference manual).

Delphi 32 will support OLE
controls (OCXes), OLE
automation, as well as provide
full support for Windows NT,
and Windows 95.
With OLE automation, devel-

opers will be able to create or
control scriptable applications
with a variety of other applica-
tions including Paradox for
Windows, Visual dBASE,
Microsoft Office, WordPerfect
Office, and others.
The current versions of Delphi

and Delphi Client/Server are
compatible with Windows 3.1,
Windows for Workgroups 3.11,
Windows 95 beta releases,
Windows NT 3.5 and 3.51,
and OS/2.
Developers currently using
Delphi can create applica-
tions that look similar to a
Windows 95 application by
using components such as
notebook tabs, outline con-
trols, spin controls, and tool
help. Then, when 32-bit ver-
sions of Delphi are available,
developers can recompile
their existing applications for
true 32-bit performance on
Windows 95 or Windows
NT without rewriting code.
Developers using low-level
code that is dependent on
Windows 16-bit segmented
architecture, or Windows 3.1
features not supported by
Windows 95, will need to
alter their code as necessary.

With Delphi 32, developers
will not be able to create 16-
bit applications. However,
applications created in
Delphi 32 that do not use
32-bit specific features can
be recompiled with the 16-
bit version of Delphi and
then run on Windows 3.1.

Delphi 32 is expected to
meet all the Windows 95
logo requirements. It will
include additional compo-
nents to support new
Windows 95 specific features
such as rich text editing,
Windows 95 style notebook
tabs, progress bars, already
said, etc. These components
can then be added to the
Component Palette.

In addition, Delphi 32 sup-
ports long file names, new
dialog boxes, styles, and
immediate access to
Windows 95 API including
facilities such as multi-
threading, plug and play,
MAPI, and more. In addi-
tion, Delphi 32 will make it
easy to create applications
that meet Windows 95 logo
requirements.

Currently, the 32-bit ver-
sions of Delphi and Delphi
Client/Server are in beta test-
ing, and are expected to be
available about 90 days after
the commercial release of
Windows 95.

Borland is planning to offer
special upgrade pricing for
registered Delphi users.
Customers who purchased
Delphi Client/Server with
maintenance will receive the
new 32-bit version free of
charge.

Borland expects the 16-
and 32-bit operating systems
to co-exist for the next 18 to
24 months and will continue
to sell and support the 16-bit
version of Delphi after
Delphi 32 is released.
Delphi INFORMANT ▲ 5

SEPTEMBER 1995

News
L I N E

Sep tember 1995
Borland Makes Profit in First Quarter

Scotts Valley, CA — Borland
International Inc. has
announced revenues for its first
quarter ending June 30, 1995
of US$53.8 million. Revenues
from the first fiscal quarter of
the prior year were US$69.1
million, however it included
US$24.5 million from the sale
of Paradox licenses to Novell.
Excluding the non-recurring
revenue from the sale of the
Paradox licenses, first quarter
fiscal 1996 revenues increased
20 percent from the same quar-
ter of the prior year.
The net income for the June
30, 1995 quarter was US$2.8
million or US$.10 per share,
compared with net income of
US$61.4 million or US$1.88
per share in the first quarter a
year ago. Included in the prior
year’s results is a US$99.9 mil-
lion non-operating gain on the
sale of Borland’s Quattro Pro
spreadsheet product line to
Novell, Inc., the Paradox license
revenue of US$24.5 million,
and a one-time charge for pur-
chased technology of US$16.2
million related to the company’s
acquisition of ReportSmith.
Excluding these non-recurring
transactions, Borland would
have reported an operating loss
of US$35 million, on revenues
of US$44.6 million, in the
quarter ending June 30, 1994.
Total operating expenses for

the quarter were US$43 mil-
lion, a 37 percent decrease from
US$68.5 million for the same
quarter of the previous year,
exclusive of the write-off of pur-
chased technology of US$16.2
million. The lower expenses in
the quarter ended June 30,
1995 reflect the restructuring
efforts started this year.

According to Gary Wetsel,
president of Borland, the quar-
ter’s results reflect Borland’s
efforts to reduce costs and the
continued success of Delphi.
ICG to Publish Oracle Informant

Elk Grove, CA — Informant
Communications Group, Inc.
(ICG) has announced it will
be publishing its third prod-
uct-specific technical maga-
zine, Oracle® Informant.
Oracle Informant will contain
in-depth technical articles on
client/server development with
Oracle® Workgroup/2000
tools. The premiere issue of
Oracle Informant is scheduled
for Winter 1995.

Oracle Informant will place
heavy emphasis on database
application development using
Oracle Workgroup/2000
products. Featuring regularly-
appearing articles covering
technical issues regarding
Oracle7 Workgroup Server,
Personal Oracle7, Oracle
Power Objects, Oracle Objects
for OLE, and Oracle Mobile
Agents, Oracle developers will
have an independent, compre-
hensive source of in-depth
technical information.

Oracle Informant will also
feature news from the Oracle
community, third-party prod-
uct information, product and
book reviews, and Oracle user
group information each
month.
Magazine-only subscriptions
to Oracle Informant are avail-
able to US subscribers for
US$49.95 a year (12 issues).
An optional subscription to
the Oracle Informant
Companion Disk is also avail-
able. The Oracle Informant
Companion Disk contains all
the source code and support
files for each article appearing
in Oracle Informant. One-year
magazine and Companion
Disk subscriptions are avail-
able for US$119.95 a year (12
issues and disks). Oracle
Informant will also be available
at major newsstand outlets.

Authors and developers
interested in contributing arti-
cles can obtain a writer’s style
guide and editorial calendar by
contacting ICG Associate
Editor Carol Boosembark at
(916) 686-6610, ext. 16 or via
e-mail at 75702.1274@com-
puserve.com.

Vendors interested in adver-
tising can obtain an Oracle
Informant Media Kit by con-
tacting ICG Advertising
Director Lynn Beaudoin at
(916) 686-6610, ext. 17 or via
e-mail at 74764.1205@com-
puserve.com.
Borland Developers
Conference, London
1996 Announced

London, England — Borland
International, Desktop
Associates Limited, and
Dunstan Thomas Limited
announced the third Borland
Developers Conference,
London 1996 will be held in
London, England on April 28
through 30 1996 at the Royal
Lancaster Hotel, Lancaster
Gate, London.
The event will feature over 40

sessions covering all Borland
mainstream products: Delphi,
Paradox, and dBASE, C++,
client/server solutions,
InterBase, and many other top-
ics including case studies. The
sessions will cover program-
ming, solutions, tools and tech-
niques, and methodologies.

Pricing for the Borland
Developers Conference,
London 1996 is £495
(US$742). Those attending
only one day pay £275
(US$412). For a complete
brochure call the conference
office at +44 0181 788 0057.
Delphi INFORMANT ▲ 6

Software World and Client/Server Developers to Meet in San Jose
 News
L I N E

Sep tember 1995
Andover, MA — DCI’s
Software World and
Client/Server Developers
Conference and Exposition is
heading to the San Jose
Convention Center in San
Jose, CA on Oct. 10-12,
1995. The event will feature
over 250 exhibitors, several
management and technical
tracks, keynote presentations,
and special events.
The management tracks

include Managing Complex
Software Projects, The Future
of Database Management,
SEPTEMBER 1995
Deploying Complex Applica-
tions, Professional Rapid
Application Development, and
Practical Business Process Re-
Engineering Strategies. For
technical growth, the show will
feature tracks on Distributed
Objects, Next Generation of
Component-based Develop-
ment, Windows 95 and OS/2,
Visual Programming — Tips
and Techniques, Cross Platform
Solutions, and Leveraging
Lotus Notes.

Attendees will hear from sev-
eral keynote speakers including
Ed Yourdon, consultant and
methodologist; Phillip White,
President, CEO and Chairman
of the Board, Informix
Software; George Schussel,
Chairman and CEO, DCI;
Rodney Knowles III, Director
of Special Projects, Atlanta
Committee for the Olympic
Games; and Steve Mills,
General Manager of Software
Solutions Division, IBM.

For more information call:
(508) 470-3880, fax: (508)
470-0526, or e-mail:
DCIconf1@aol.com.
Borland Ships Visual dBASE 5.5 and Compiler

Software Development ’95 East
Over 200 venders are expected

to attend this year’s Software
Development East in Washington,

D.C., Oct. 2-6. The event
features more than 150 lectures,

workshops, and tutorials, covering
topics such as C++, Windows
95/NT development, object-ori-
ented programming, database
programming and design, and

more. For more information call
Miller Freeman Inc. at (800) 441-

8826, fax (415) 905-2222,
e-mail sd95east@mfi.com, or

visit their home page at:
http://www.mfi.com/sdconfs/
Scotts Valley, CA — Borland
International Inc. has released
its Visual dBASE 5.5 database
and Visual dBASE Compiler
for the Microsoft Windows
3.1 and Windows 95 operat-
ing systems. The company also
announced a new product:
Visual dBASE Client/Server.

Visual dBASE 5.5 is the only
second-generation, object-ori-
ented Xbase database. It fea-
tures new productivity tools
for users and developers, per-
formance enhancements, and
client/server capabilities. The
separate Visual dBASE
Compiler allows developers to
create and deploy stand-alone
.EXE applications royalty-free
to users.

Using the new client/server
version of Visual dBASE,
developers can create front-
ends to existing Oracle,
Sybase, Microsoft SQL Server,
Borland InterBase, and
Informix database servers. The
product includes Visual
dBASE, the Visual dBASE
Compiler, native Borland SQL
Links, a single-user Local
InterBase Server and Borland’s
new Data Pump Expert.

The estimated street prices
for Visual dBASE 5.5 and the
Visual dBASE Compiler are
US$349.95 each. Special
upgrade prices are available for
current dBASE users and
competitive products. The
estimated street price for
Visual dBASE Client/Server is
US$695. For more informa-
tion or to place orders, call
Borland at (800) 233-2444.
10th Annual PC Expo in Chicago

Fort Lee, NJ — The Blenheim
Group has announced that the
Tenth Annual PC Expo will
be held October 3 through 5
at the McCormick Place East
in Chicago, IL. The event will
host over 200 exhibitors, fea-
turing applications supporting
Windows 95, OS/2, and
Macintosh operating systems.
Blenheim expects to attract
over 30,000 attendees, includ-
ing corporate volume buyers
from the business and govern-
ment sector. Volume resellers
in the audience will include
software developers, dealers,
VARs, and consultants.

Keynote speakers for PC
Expo feature: Pallab Chatterjee,
president of Personal Product-
ivity Products business, Texas
Instruments, Inc.; James P.
McNeil, executive vice presi-
dent, corporate development,
Cheyenne Software; and
Robert E. Lawton, vice presi-
dent of marketing, The
Wollongong Group, Inc.
PC Expo will also have an

“Internet Theater” enabling
attendees to learn about the
resources available on the
Internet, as well as gain
hands-on experience. In addi-
tion, there will be several
areas for specific products and
services. These include an
Internet Pavilion, Networking
Pavilion, Multimedia
Pavilion, and Technology
Recruitment Center.

There will be a variety of
seminars, half-day work-
shops, and tutorials consist-
ing of in-depth user case
studies available throughout
the event, such as network-
ing, emerging technologies,
technology management,
Windows, client/server,
Internet, and Groupware.

For more information call The
Blenheim Group at (800) 829-
3976 or visit their home page
at: http://WWW.shownet.com.
Delphi INFORMANT ▲ 7

SEPTEMBER 1995

The TSlideBar Component
Component Design Techniques for the Initiated

On the Cover
Delphi / Object Pascal

By Robert Vivrette
S ince its release in February, Delphi has created quite a stir in the com-
puter industry. One of the more prominent changes I have seen is in the
arena of component design. I’m sure you’ve noticed the proliferation of

component design articles in various programming journals.

The component design phenomenon is one of the exciting features of Delphi. I don’t think you
can find a better platform to write incredibly powerful and robust components. Each component
that you write in Delphi can be just as capable and efficient as those that are pre-installed. And
once you’ve developed a new component, it is seamlessly integrated into the environment. (How
many custom control articles did you see for Visual Basic when it first came out? Not many I bet.)

This article will discuss some of the more advanced elements of component design in Delphi. The
featured example is a slide bar component, but the focus will be on how you can implement these
more advanced capabilities into your custom components.
The TSlideBar component (see Figure 1) is functionally similar to a stan-
dard scroll bar, but it is more attractive and consumes less screen real
estate. While developing this component, we’ll cover these topics:
• Handling the focus
• Receiving input from the keyboard
• Mouse capture and mouse events
• Painting on a control’s canvas
• Storing images in a resource file
• Transparent areas and masking
• Working with a TStringList
The TSlideBar Component
Before going into the details, let’s look at what we want from this com-
ponent. At its most elementary level, a slide bar component is really
just a way of enabling the user to select a number. So, why not just use
an edit box and have the user enter a number?

There are several reasons for not using an edit box. First, that
approach requires the user to use the keyboard, and it would be
convenient if the user could also select a number with the mouse.
Second, the number may be irrelevant. For example, the number may
Delphi INFORMANT ▲ 8

On The Cover

Figure 1: A demonstration of the SlideBar
component. Note that some have different
thumbs, width trenches, and orientations
(vertical vs. horizontal). In addition, some are
raised while others are lowered, some have
tick marks, and one of the controls currently
has the focus (as indicated by the red high-
light). Finally, the control features an optional
“pointing hand” custom cursor.
be an index for a list
of strings. Suppose
you are using the
control to indicate a
movie rating. Typical
responses may be G,
PG, PG-13, and R.
The slide bar could
be used to display
these four choices
without requiring
the user to enter
anything. In addi-
tion, the user does
not have to be con-
cerned that the pro-
gram has assigned 0
to G, 1 to PG, 2 to
PG-13, and 3 to R.
So we want the basic ability to obtain a number from the
component (i.e. its “position”). But let’s take it a bit further.
The thumb that we are sliding back and forth may not fit the
design scheme of the application as a whole. So, we’ll allow
the developer to have different thumbs. We can also allow the
slot that the thumb moves along to be raised or lowered, and
of variable width.

Naturally, we want to have the mouse move the thumb. Therefore
the component will have to be “mouse aware”, responding to mouse
clicks and mouse movement. In addition, the user may want to use
the keyboard, so support should be implemented for the compo-
nent to respond to keyboard events. Since the slide bar can be
selected with the keyboard, it should indicate when it has focus.
We’ll also allow the slide bar to be oriented vertically or horizontally.

There are a few other things I added to the component to spice
it up. The TSlideBar can display small tick marks along the slot
to “tell” the user there are fixed positions that the thumb will
jump to. A custom cursor was also added, so that when the
mouse passes over the control, it presents a pointing hand — a
more appropriate mouse pointer for a slide bar control.

Finally, I decided it would be handy if the control could hold a
list of strings for its various positions. That way, the control itself
could report which string has been selected, rather than getting
the control’s position and running through a big case statement
to determine the string.
Focus! Focus!
In a Windows application, at any time, the user must be able to
clearly see which control on a form currently has focus. Most
controls indicate this by altering their appearance. A button for
example, will have its text surrounded by a dotted line. An edit
box will show a blinking insertion point, or highlight some of
the text inside. Scroll bars (when they are allowed to receive
focus) often have a blinking thumb.
SEPTEMBER 1995
The TSlideBar component should be no different.
Fortunately, managing which object has focus in an applica-
tion is primarily the operating system’s job. All that needs to
be done from the component’s perspective is to recognize
when the component has gained or lost focus, and determine
how to indicate this to the user.

Detecting a focus change is just a matter of including handlers
that will trap the appropriate Windows messages. In this case,
we are looking for the WM_SETFOCUS and WM_KILLFOCUS mes-
sages. In the private section of your component’s class declara-
tion, you would include these lines of code:

private
procedure WMSetFocus(var Message: TWMSetFocus);

message WM_SETFOCUS;
procedure WMKillFocus(var Message: TWMKillFocus);

message WM_KILLFOCUS;

When the user tabs through the controls on the form, or
clicks on a particular control, Windows first sends a WM_KILL-
FOCUS message to the control that had focus. Then, a
WM_SETFOCUS message is sent to the control that is gaining
focus. From the component’s side, we simply write handlers
for these messages. In the case of TSlideBar, I just want the
component to repaint itself when it gains or loses focus, as fol-
lows:

procedure TSlideBar.WMSetFocus(var Message: TWMSetFocus);
begin

Refresh;
end;

The WMKillFocus procedure would also be the same. Now,
when the component is being repainted, it’s a simple matter
of looking at the Focused property. If the component current-
ly has focus, this will return True. Otherwise, it will return
False.

Based on the result, the center portion of the slot is then col-
ored appropriately. To add a bit more pizzazz to the control,
the FocusColor property was added to define the color that will
be used when the component has focus. Inside the routine for
drawing the slot is the code for managing the focus:

{ Now color a filled rectangle in the center
if the control has focus }

if Focused then
Brush.Color := FocusColor

else
Brush.Color := clSilver;

Pen.Style := psClear;
{ Draw the focus highlight }
Rectangle(X1+1, Y1+1, X2+1, Y2+1);

There are different ways of implementing focus features. For
example, in many cases the WMSetFocus procedure could
draw the focus highlight. However, I chose not to do this
with TSlideBar, because the thumb sits over the focus high-
light and I would have to redraw it as well. (Once I start
doing that, then I might as well redraw the whole thing.)
Delphi INFORMANT ▲ 9

-

e

-

On The Cover
A Key Feature
There is nothing more frustrating than being forced to use a
Windows control with only the mouse or keyboard. A well-designed
control must work with either device and should not require the
user to constantly switch between the two input devices.

Again, adding this feature doesn’t require expending too many
brain cells. First, we must override the KeyDown event that we
are inheriting from up the object tree. In the private section of
the class definition, you should add a line such as:

private
procedure KeyDown(var Key: Word;

Shift: TShiftState); override;

At a minimum, we want to enable the user to move the thumb
using the arrow keys. I also added support for h and e to
move the control to its minimum and maximum values respec-
tively. In addition, I decided to add support for u and
d. Since the arrow keys only move the slide bar’s position
by one, you would be in trouble if the range of the slide bar was
1000. Therefore, u and d were enabled to move the
slide bar’s position by 10 percent of its total length. To enable
these functions, the KeyDown procedure was used (see Figure 2).

The Position property is (of course) the slide bar’s current posi-
tion. The Max and Min properties are the maximum and mini-
mum values that the slide bar can reach.
SEPTEMBER 1995

Figure 2: The KeyDown procedure.

procedure TSlideBar.KeyDown(var Key: Word;
Shift: TShiftState);

var
b : Integer;

begin
b := MaxInt(1,(Max-Min) div 10);
case Key of

VK_PRIOR : if (Position-b) > Min then
Position := Position - b

else
Position := Min;

VK_NEXT : if (Position+b) < Max then
Position := Position + b

else
Position := Max;

VK_END : if IsVert then
Position := Min

else
Position := Max;

VK_HOME : if IsVert then
Position := Max

else
Position := Min;

VK_LEFT : if Position > Min then
Position := Position - 1;

VK_UP : if Position < Max then
Position := Position + 1;

VK_RIGHT : if Position < Max then
Position := Position + 1;

VK_DOWN : if Position > Min then
Position := Position - 1;

end;
end;
Note: When constructing case statements, try to list the items
in ascending order. Here for example, VK_PRIOR is a constant
with the value of 21, VK_NEXT has the value 22, and so on to
VK_DOWN that has a value of 28. When a case statement is sort
ed in ascending order, the compiler can optimize the code to
execute faster. If they are not in sequential ascending order, th
compiler must use a less efficient method to generate the
needed code. All it takes is one line out of sequence to foil
optimization, so make sure you pay attention.

When you add the code shown in Figure 2 and run the pro-
gram — it doesn’t work! Rather than moving the thumb’s posi
tion, the arrow keys are moving the focus between controls. To
get your control to pay attention to the arrow keys, you must
trap a Windows message called WM_GETDLGCODE and tell it
that you will handle the arrow keys. Like our WM_SETFOCUS
and WM_KILLFOCUS handlers above, we must add the follow-
ing line to the private section:

private
procedure WMGetDlgCode(var Message: TWMGetDlgCode);

message WM_GETDLGCODE;

The procedure’s code is as simple as it gets:

procedure TSlideBar.WMGetDlgCode(var Message:
TWMGetDlgCode);

begin
Message.Result := DLGC_WANTARROWS;

end;

With the TSlideBar component, we are only interested in trap-
ping the arrow keys. However, there may be instances in other
components where you will want to catch other keys.

The WMGetDlgCode handler can also use any combination of
other constants including, but not limited to:
• DLGC_WANTALLKEYS

• DLGC_WANTCHARS

• DLGC_WANTTAB

• DLGC_WANTMESSAGE

You can read more about this topic by searching on WM_GETDL-
GCODE in the Windows API on-line help file (WINAPI.HLP).
Build a Better Mouse Trap
Normally, a Windows control or form only receives mouse mes-
sages when the mouse cursor is over its client area (i.e. the area
bounding the dimensions of the control or the inside area of a
form). Sometimes however, it becomes necessary for a control to
receive mouse messages even when the mouse is outside this area.
This is known as “capturing” the mouse.

Fortunately with the Delphi component designer, mouse capture
is (for the most part) handled for you. For example, with the
TSlideBar component, we don’t want the user to have to keep
the mouse within the slide bar’s boundaries. If mouse capture
was not on, the mouse messages would immediately stop after
the mouse leaves the control.
Delphi INFORMANT ▲ 10

On The Cover
By default, however, mouse capture has been turned on for
components that descend from the TControl object. As a
result, when you select the slide bar’s thumb (by holding
down the left mouse button), you can drag the mouse all over
the screen and the thumb will move appropriately. As long as
you keep the mouse button down, that control has “captured”
the mouse. When the mouse button is released, it immediate-
ly releases the capture.

You can modify whether the control will capture the mouse by
setting and/or clearing the csCaptureMouse flag from the compo-
nent’s ControlStyle property. If you are going to change a compo-
nent’s ControlStyle you should do it in the Create method. For
example, to ensure that a control does not capture the mouse,
the code would look similar to this:

ControlStyle := ControlStyle - [csCaptureMouse];

Also keep in mind that when a component has captured the
mouse and you move outside its client area, the MouseMove
messages being generated may be reporting negative X and/or Y
coordinates (since they are relative to the component’s coordinate
system). Make sure your program knows how to handle this.

Since the TControl object has the csMouseCapture flag on by
default, we don’t need to include any code in our component
to manage the mouse capture. It will just work. However, this
is an important concept to understand for developing well-
behaved components.

Besides providing for the mouse capture, the TSlideBar must also
respond to various mouse events (to enable the mouse to move
the thumb). Here are the basic activities we want to trap:
• If the user clicks on either side of the thumb, the thumb

should shift a single position in the appropriate direction.
• If the user selects the thumb, he or she should be able to slide

it back and forth. The thumb should slide smoothly while
being dragged, and not hop between positions. (This would
ruin the visual effect that you are holding onto the thumb.)
When the left mouse button is released, the thumb should
“click” to the closest position (indicated by the tick marks).

To respond to these activities, we must detect the MouseDown,
MouseUp, and MouseMove events. The TSlideBar component
overrides these procedures as follows:

protected
procedure MouseUp(Button: TMouseButton;

Shift: TShiftState; X,Y: Integer); override;
procedure MouseDown(Button: TMouseButton;

Shift: TShiftState; X,Y: Integer); override;
procedure MouseMove(Shift: TShiftState;

X,Y: Integer); override;

The MouseUp and MouseMove methods have some pretty bor-
ing calculations in them and would not add much to this dis-
cussion. To summarize their behavior, however, MouseUp
determines if the thumb was being dragged, and if so, finds
the closest position to “click” the thumb to. If it was not
SEPTEMBER 1995
being dragged, it determines if the MouseUp event occurred to
the left or right of the thumb. If the click occurred on the
left, the thumb is moved one position to the left. If the click
occurred on the right, the thumb is moved one position to
the right.

MouseMove only moves the thumb if the mouse button is down,
and it is dragging the thumb. The MouseDown event, however, is
short and interesting:

procedure TSlideBar.MouseDown(Button: TMouseButton;
Shift: TShiftState; X,Y: Integer);

begin
SetFocus;
Dragging := PtInRect(ThumbRect,Point(X,Y));
if IsVert then

DragVal := Y
else

DragVal := X;
end;

First, the TSlideBar component tells Windows that it now has
the focus. This makes sense since the user has just clicked the
mouse button on the control. Next, a Boolean value called
Dragging is set to True or False provided the MouseDown event
occurred within the rectangle that bounds the thumb’s current
position. If so, the MouseMove events will enable the thumb to
move with the mouse.

The third line simply saves the X or Y position of the mouse
click depending on whether the component is oriented in a hori-
zontal or vertical position. If the slide bar is a vertical one, we are
interested in where the mouse is on the Y scale so the thumb can
be moved appropriately. If the slide bar is horizontal, we would
then be interested in the X coordinate.
Painting the Town
One of the basic features of a custom component is its appear-
ance. Sometimes you may inherit a component’s appearance
from an ancestor, but often you must provide your own “look”
to custom components. The control’s appearance is not an aspect
of component design that should be left for last.

Fortunately for us, the object we are likely to descend from
(TCustomControl) has most of what we need for drawing our
own component. The key element TCustomControl provides is
the Canvas property. With a canvas, we can easily draw until we
are content with the component’s appearance.

First, you must override the inherited Paint method. This Paint
method only provides a dashed rectangle at design time, and
often that is not something we want. In the protected section of
your component class declaration you would add a line:

protected
procedure Paint; override;

This tells Delphi that you are going to create a custom Paint
method, and that you are not interested in the Paint method
inherited from higher up the object tree.
Delphi INFORMANT ▲ 11

On The Cover
For the TSlideBar component, I divided the painting responsibil-
ities into a number of procedures: DrawTrench, DrawThumbBar,
RemoveThumbBar, SaveBackground, and WhereIsBar. Therefore,
the Paint procedure is quite simple:

procedure TSlideBar.Paint;
begin

DrawTrench;
WhereIsBar;
SaveBackground;
DrawThumbBar;

end;

The Paint method will be called every time Windows deter-
mines that the component must be redrawn, and the listed
procedures are all that are needed to completely draw the
TSlideBar. However, don’t be fooled by the illusion that you
can control when the Paint method is called.

There are many times that the procedure will be called and
those calls will be out of your control. For example, your
component may be covered by a dialog box or window from
another application. In this case, once the obstruction is
cleared, Windows marks all items that were covered as requir-
ing repainting.

It’s interesting to note however, that many of the drawing behav-
iors of the TSlideBar component do not go through the Paint
method. In many cases, I don’t want the entire control to be
repainted, only a portion of it. For example, when the thumb is
moving, forcing the entire control to repaint is not a good deci-
sion. If a user is doing this fast enough, or is dragging the
thumb, the control will flicker erratically. This occurs because
each move redraws all the component’s elements.

So, let’s apply a little common sense to the issue. If the thumb is
moving, then that should be the only thing that repaints. Right?
For the most part yes, but there is one problem. When the thumb
moves, we must be able to repaint the area of the slot that it had
just covered. The slot may have focus, and it may have also cov-
ered over one or more tick marks as well. At this point you may
be thinking that flicker didn’t look so bad after all.

With the TSlideBar, a background bitmap is maintained, in
addition to the ThumbBar bitmap. This background bitmap is
the same size as the ThumbBar bitmap and will always hold the
image behind the bitmap. Then, whenever I want to move the
thumb, I follow these procedures:
• Place the background image over the current location of the

thumb.
• Get the background image of the new location of the thumb.
• Place the thumb in its new location.

If I stick to this sequence in all situations when the thumb is
moving, the control will be doing the minimum amount of
painting necessary.

Now, instead of refreshing the control after every move of the
thumb, I can do only the procedures that are absolutely neces-
SEPTEMBER 1995
sary to maintain the component’s correct appearance. Here is the
code that is called when the thumb moves:

procedure TSlideBar.SetPosition(A: Integer);
begin

RemoveThumbBar;
FPosition := A;
WhereIsBar;
SaveBackground;
DrawThumbBar;
if Assigned(FOnChange) then

FOnChange(Self);
end;

The RemoveThumbBar procedure places the saved background
image over the thumb’s current location. Then, the new position
is set (FPosition is the private variable that holds the current
thumb’s position). Next, WhereIsBar is called to set the region
that the thumb will soon occupy (its new position). The back-
ground image is saved in that region. Finally, the thumb is
drawn in its new position and calls any defined OnChange event
that the programmer might have assigned.

By keeping the drawing to a minimum, the TSlideBar will be able
to quickly update itself in response to mouse and keyboard events.
Being Resourceful
Resources are your friend. Resource files are a way of organizing
data and storing it in with a program or component. They are
generally used to hold the user-interface elements of a program
such as bitmaps, icons, cursors, strings, version information, dia-
log boxes, etc. Developers can also define their own resource
types if necessary (e.g. a proprietary graphics format).

Resource files can be generated with a number of programs such
as Resource Workshop and (to a more limited extent), the Image
Editor that comes with Delphi. The Image Editor is limited to
three basic graphic types: bitmaps, cursors, and icons. Once a
resource file has been created, it can be compiled with a program
or unit so that it is readily available. In a Delphi component, the
resource is bound with the unit (.DCU) when it is compiled. In
this way, a component can have access to this data even at design
time (e.g. the TSlideBar component).

To more efficiently manage system memory, Windows has a cer-
tain amount of flexibility when it deals with resource data. Even
though resource data is bound with a program or component,
Windows will often choose to leave the data on the disk until it
is needed. In addition, by default resources are marked as “dis-
cardable” so that if Windows must, it can release the resource
and memory it is using. If the program needs the resource again
later, Windows will reload it. All this is completely transparent to
the programmer and user.

However, there are some minor performance penalties that are
associated with allowing Windows to have this kind of flexi-
bility. Clearly, if a resource is being frequently swapped on
and off the hard disk, the user may be able to see the side
effects. The program may hesitate very briefly while Windows
retrieves the resource.
Delphi INFORMANT ▲ 12

On The Cover

Figure 3 (Top): The Delphi Image Editor. Each bitmap is assigned an
identifying label. Figure 4 (Bottom): Creating the mask for the circular
thumb in the Image Editor.
If necessary, the programmer can override these default behaviors
by marking a resource as “fixed”, rather than “discardable” or
“movable”. This prevents Windows from playing with it. In addi-
tion, you can mark a resource as “pre-load” or “load-on-call” to
control when Windows will load the resource. (Pre-load loads
the resource when the program starts. Load-on-call loads the
resource only the first time the resource is referenced.) However,
unless it is required for performance reasons, it’s better program-
ming practice to let Windows manage the resources on its own
by keeping the default options.

The resources used by TSlideBar consist of a collection of
bitmaps for the different thumbs, and a cursor. (We’ll discuss
the cursor later.) Each bitmap is given an identifying label as
shown in Figure 3.

Each bitmap included in the resource file also has a mask asso-
ciated with it. A mask is used to make sections of a bitmap
transparent so you can see areas that the bitmap is sitting on.
The thumbs need masks because not all of them are rectangu-
lar. If we try to move a circular thumb around on the form, it
would have four small corners that would be painted along
with it. To solve this problem, a mask is created (see Figure 4).

Figure 4 shows how Circle1Mask is used to determine the por-
tions of Circle1 that we want. (Think of it as a kind of “cookie
cutter”.) If you stacked the two bitmaps, the only portions of
Circle1 that would be painted on the control are those areas
that would show through the black portions of Circle1Mask.
The white portions of the mask would be replaced with what-
ever background pixels happened to be under the thumb.

Loading the bitmaps into the TSlideBar component is fairly straight-
forward. First, we must set up some TBitmap objects to hold the
three we will be dealing with: ThumbBar, ThumbBar Mask, and a
storage bitmap for the Background pixels. In the Create method of
the component, we would set these up with this code:

constructor TSlideBar.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
ThumbBmp := TBitmap.Create;
MaskBmp := TBitmap.Create;
BkgdBmp := TBitmap.Create;
{ The rest of the Create method goes here ... }

end;

Whenever a new thumb style is chosen, the SetThumbStyle method
is called. (It is the “write” access method for the FThumbStyle pri-
vate variable.) The code in Figure 5 shows a portion of what this
method would resemble. Then, when it is time to paint the thumb
on the screen, the real work begins (see Figure 6). Although this
code looks a little convoluted, it’s effective. Windows performs
these actions when it deals with minimized icons of running appli-
cations. Each icon has a transparent area around it so that the
desktop color (or image) will show through.

The first step is to create a temporary bitmap to hold an inter-
mediate step in the process. The temporary bitmap is made to
SEPTEMBER 1995
the same dimensions as the currently selected thumb. Then, the
background area (that would normally reside under the thumb)
is copied onto this temporary bitmap. Next, the mask bitmap is
painted onto the temporary bitmap using the SrcAnd copy
mode. This causes Windows to perform some math on the
combination of the pixels in such a way that the black areas of
the mask are erased from the destination image.

Now, we paint the bitmap of the thumb over the resulting tem-
porary image. This time however, we use the SrcPaint copy mode
that causes the image we want to be merged with the existing
background. Then we copy the resulting image to the canvas
with the CopyRect command.

Notice also that this whole procedure is within a try...finally
structure. This ensures that the temporary bitmap is released
even if an error occurs during the drawing process. This prevents
resource leaks and is a feature you should always keep in mind if
your component uses memory or other resources.
Delphi INFORMANT ▲ 13

On The Cover

Figure 5 (Top): The SetThumbStyle method. Figure 6 (Bottom): The
DrawThumbBar method.

procedure TSlideBar.SetThumbStyle(A: TThumbStyle);
begin

if ThumbStyle <> A then
begin

FThumbStyle := A;
case ThumbStyle of

tsCircle1 : ThumbBmp.Handle :=
adBitmap(HInstance,'Circle1');

tsSquare1 : ThumbBmp.Handle :=
LoadBitmap(HInstance,'Square1');

{ Same for the rest of the bitmaps }
end;
case ThumbStyle of

tsCircle1 : MaskBmp.Handle :=
LoadBitmap(HInstance,'Circle1Mask');

tsSquare1 : MaskBmp.Handle :=
LoadBitmap(HInstance,'Square1Mask');

{ Same for the rest of the masks }
end;

Refresh;

end;

end;

procedure TSlideBar.DrawThumbBar;
var

TmpBmp : TBitMap;
Rect1 : TRect;

begin
try

{ Define a rectangle to mark the dimensions
of the thumb }

Rect1 := Rect(0,0,ThumbBmp.Width,ThumbBmp.Height);
{ Create a working bitmap }
TmpBmp := TBitmap.Create;
TmpBmp.Height := ThumbBmp.Height;
TmpBmp.Width := ThumbBmp.Width;
{ Copy the background area onto the working bitmap }
TmpBmp.Canvas.CopyMode := cmSrcCopy;
TmpBmp.Canvas.CopyRect(Rect1,BkgdBmp.Canvas,Rect1);
{ Copy the mask onto the working bitmap with SRCAND }
TmpBmp.Canvas.CopyMode := cmSrcAnd;
TmpBmp.Canvas.CopyRect(Rect1,MaskBmp.Canvas,Rect1);
{ Copy the thumb onto the working bitmap with
SRCPAINT }

TmpBmp.Canvas.CopyMode := cmSrcPaint;
TmpBmp.Canvas.CopyRect(Rect1,ThumbBmp.Canvas,Rect1);
{ Now draw the thumb }
Canvas.CopyRect(ThumbRect,TmpBmp.Canvas,Rect1);

finally
TmpBmp.Free;

end;
end;
Finally, a reference to the resource file in the source code
must be included to bind the resource data to the rest of the
component. To do this you use the $R compiler directive as
follows:

{ $R SLIDEBAR.RES }
SEPTEMBER 1995
Let’s Give ‘em a Hand!
One of the nice features of the TSlideBar component is that it
has an embedded cursor that can be used at run-time. It’s a
little more visually correct to have a hand or finger (versus an
arrow) move a sliding thumb. You do have the ability to
change any of the predefined cursors by altering the compo-
nent’s Cursor property, but you’re limited to the cursors that
are provided with Delphi. What if you want your own?

In this case, we do want our own because none of the stock cur-
sors would make any more sense than the arrow does. Therefore,
a custom cursor was included with TSlideBar. The cursor is cre-
ated using Image Editor or Resource Workshop, and then saved
into an .RES file. This .RES file is then bound with the compo-
nent when it is compiled.

Once we have the cursor linked with the component, all that
remains to do is to obtain a handle to an HCursor, and then
display it at the appropriate time. Since I did not want to force
everyone to use this new cursor, I created a Boolean property
called HandCursor. If HandCursor is set to True, the compo-
nent will switch to the custom cursor whenever the mouse
passes over it. If HandCursor is False, the component will use
whichever cursor was defined in the inherited Cursor property.

To prepare for managing the cursor, we need to declare two
HCursor variables — one to hold a pointer to the custom cur-
sor, and the other to hold a pointer to the original cursor (so
it can be restored). In the component’s private section,
declare two variables:

private
HandPointer : HCursor;
OriginalCursor : HCursor;

Then we must remove the cursor from the resource file. Since
a variable was declared to hold a pointer to the new cursor, we
can load it from the resource in the Create method by using
this line of code:

HandPointer := LoadCursor(HInstance,'HandPointer');

Next, we must find a safe place to grab the original cursor. It
happens to work nicely in the WMGetDlgCode procedure, so the
following code is added there:

OriginalCursor := GetClassWord(Handle,GCW_HCURSOR);

It’s important that the original cursor is saved at a point in
the component’s life where it has a cursor defined.
Otherwise you will be saving garbage. It cannot be done in
the Create method (where I originally tried it) because the
cursor is not defined at that point (i.e. before the compo-
nent is completely created).

The logical place to make the switch between the original and
new cursor would be in the MouseMove event handler. After
all, if the control was receiving MouseMove events, that indi-
Delphi INFORMANT ▲ 14

On The Cover
cates that the mouse is over the component, right? Here’s
code to make the switch:

procedure TSlideBar.MouseMove(Shift: TShiftState;
X, Y: Integer);

begin
if HandCursor then

SetClassWord(Handle, GCW_HCURSOR, HandPointer)
else

SetClassWord(Handle, GCW_HCURSOR, OriginalCursor);
{ Continue with the rest of MouseMove... }

end;
Robert Vivrette is a contract programmer for a major utility company and Technical
Editor for Delphi Informant. He has worked as a game designer and computer consul-
tant, and has experience in a number of programming languages. He can be reached
on CompuServe at 76416,1373.
You’re Just Stringing Me Along
While completing the TSlideBar component, I had a brain-
storm. Much of the time, a slide bar component is used to pick
different textual values from a list. A common approach to this
may be to capture the slide bar’s position when it changes, and
run that value through a big case statement to obtain a string
value that can then be reported in a TLabel on the form. Why
not allow the component to hold its own strings? To accom-
plish this, I simply added a TStringList object to the compo-
nent in its Create method:

FLabels := TStringList.Create;

Then, I added a write access method to the string list to enable
the strings to be edited at design time. Since TStringList is a
complete object, it features a property editor for its strings. By
double-clicking on the Labels property in the Object Inspector,
the component will display the TStringList property editor,
allowing you to enter the strings that the component will report
depending on its current position:

procedure TSlideBar.SetLabels(A: TStringList);
begin

FLabels.Assign(A);
end;

Finally, I added a public procedure called CurrentLabel that
obtains the current string value from the TSlideBar component:

function TSlideBar.CurrentLabel: string;
begin

if ((Position-Min+1) <= Labels.Count) and
(Position >= Min) then

CurrentLabel := Labels[Position-Min]
else

CurrentLabel := '<Un-Defined>';
end;

In your program, you can add a procedure to the TSlideBar com-
ponent’s OnChange event that fetches the current label and then
feeds it into a TLabel on the form. From working with a huge
case statement, we have boiled it down to a single line of code:

procedure TForm1.SlideBar1Change(Sender: TObject);
begin

Label1.Caption := SlideBar1.CurrentLabel;
end;
SEPTEMBER 1995
Conclusion
Although the complete Object Pascal listing for the TSlideBar com-
ponent was too lengthy to present in this article, there is enough
information here to give you a good sense of how to implement
many of these features in your components. [The entire component
and source is available on diskette and for download. See below.]

Delphi provides developers with an extremely powerful and
versatile tool in its component design capabilities. With
these, a programmer can easily develop powerful and feature-
rich components and controls that rival any of the controls
that are provided in Windows itself. ∆

The TSlideBar component (including its .PAS and .RES files) is
available on the 1995 Delphi Informant Works CD located in
INFORM\95\SEP\RV9509.
Delphi INFORMANT ▲ 15

SEPTEMBER 1995

A Dynamic Toolbar
Using Delphi’s Built-In Events
to Build a User-Configurable Toolbar

Question: Why is it necessary to drag down from the Olympian fields of Plato the fundamental
ideas of thought in natural science, and to attempt to reveal their earthly lineage?
Answer: In order to free these ideas from the taboo attached to them, and thus to achieve greater
freedom in the formation of ideas and concepts.
— Albert Einstein, Relativity, the Special and General Theory

On the Cover
Delphi / Object Pascal

By Gary Entsminger
A toolbar is a panel of controls, usually located just below the menu bar
at the top of a form. Typically, a toolbar behaves like a menu. For
example, a user clicks on a button or a menu item, and the application

responds to the Click event. In Delphi, most code executes in response to
events. Thus, most components contain an OnClick event procedure that you
can modify to suit specific applications. The OnClick event procedure, you’ll
soon discover, can be the star of an application.
How to Create a Toolbar
It’s easy to add a toolbar to any Delphi application:
• Add a Panel component to a form.
• Set the Panel’s Align property to alTop to force the toolbar to align itself to the top of the form

even when the form is resized.
• Add controls (usually SpeedButtons) to the panel.
• Assign control properties. For example, a SpeedButton component
needs a glyph, a bitmap image indicating what the SpeedButton does
when clicked.

• Modify the OnClick event procedure for each control to indicate
what the application should do when the control is clicked.

Figure 1 shows a SpeedButton toolbar at
design time.

But what if you want to let users create,
destroy, or change the properties of the
controls on a toolbar at run-time? You can, but it’s trickier because it
means an application must create new objects (say, SpeedButtons) at
run-time and then assign their OnClick event procedures to actions that
are unknown at design time.

In this article, we’ll discuss this assignment problem and others that arise
when creating a dynamic toolbar. We’ll build a toolbar that acts as a gener-
ic “program launcher”.

Figure 1: The sample application
at design time.
Delphi INFORMANT ▲ 16

On The Cover
The sample project (Speedbar.DPR) uses a menu to allow
users to customize the toolbar. Between application ses-
sions, the toolbar’s state is maintained in a table that is
loaded each time the application opens. Since one way to
use the toolbar is as an application launcher, we’ll also
allow it to optionally be a floating window (i.e. on top of
all other windows).
The User Interface: A Form and Components
In Delphi, building the user interface is easy. From the default
project, add the following components from the Component
Palette to a form:
• Menu from the Standard page
• Panel from the Standard page
• OpenDialog from the Dialogs page
• Table from the Data Access page

We’ll use the Menu component to allow users to issue com-
mands. The Panel will contain the SpeedButtons users add at
run-time. The OpenDialog component makes it easy for
users to select files to execute, and bitmaps for the
SpeedButtons. The table will preserve the toolbar’s state
between application sessions.
Edit the MenuItems Property
Double-click the Menu component to open the Menu
Designer. This dialog box enables you to edit the Menu
component’s MenuItems property. First, add two items to the
menu bar with captions &Buttons and &Form. (The amper-
sand indicates that the letter following the ampersand will be
the underlined shortcut key. For example, AB will select
the Buttons menu item.)

Under the Buttons item add the Add button (&Add
button) and Remove button (&Remove button). Under
Form add Normal (&Normal) and Always on top (&Always
on top). Figure 2 shows the form under development with
the Menu Designer open. When you’re done, close the
Menu Designer.
SEPTEMBER 1995

Figure 2: Building the menu with the Menu Deigner.
Making the Toolbar Dynamic
Now things get more interesting (call this Brainstorming
103). We already decided to add and remove SpeedButtons at
run-time and save the toolbar between application sessions.
Let’s also opt for automatically loading and saving the toolbar.

The program uses a table to store the data for the toolbar
between sessions. How about storing the SpeedButtons them-
selves during each session?

Each time we create a SpeedButton, Delphi allocates memo-
ry for it. If a user removes a SpeedButton from the toolbar,
we want to recover that memory as soon as possible. To
recover that memory we use the SpeedButton’s built-in Free
method. The only catch is that we must know which
SpeedButtons to free — that is, which SpeedButtons were
created at run-time. We can keep track of SpeedButtons by
maintaining them in a list, using Delphi’s nifty, ready-made
solution — the TList object.

At the beginning of each session, we’ll create a list of
SpeedButtons. Then, each time a user adds or removes a
SpeedButton, we’ll update the list. If we need to remove all
SpeedButtons, we’ll iterate through the list, removing them
one by one. We’ll use a list instead of an array because a list is
dynamic like the toolbar. We don’t know how many
SpeedButtons a user might add to a toolbar, and we don’t have
to specify a list size at design time.

If you think maintaining a list of SpeedButtons might get expen-
sive (in terms of memory and other resources), relax. Every
Object Pascal object (and therefore every component, such as a
SpeedButton) is really a pointer, a variable containing the address
of a memory location. Therefore, a list of objects is really a list of
pointers to objects, not a list of the objects themselves.

When should loading and saving occur? A good time to load
is when the Form.OnCreate event procedure executes. Saving
could occur when the application terminates, or each time a
user adds a new SpeedButton to the toolbar. Let’s opt to save
the toolbar each time it is modified. This way, the table will
always be current.

There are a few more details we need to worry about, including:
how to execute a file, how to create an event for each new
SpeedButton, and how to protect the application from I/O
exceptions. Before we discuss these details, however, let’s finish
designing more of the application.
Create the Toolbar Table
First, use the Database Desktop to create a table called
Speedo.DB. There are at least two important pieces of
information to save between sessions to reload a toolbar —
the SpeedButton’s Hint and Glyph properties. Both of
these properties are strings. The Glyph property specifies a
file containing a bitmap to appear on the SpeedButton.
The Hint property is the text (or balloon help) that
Delphi INFORMANT ▲ 17

Figure 4: Use the Object
Inspector to set the Table compo-
nent’s TableName property to
Speedo.DB.

On The Cover
appears when the user moves the mouse pointer over a
SpeedButton. In addition, in the toolbar application, Hint
serves a second purpose — it contains the full path of a
file or application to execute.

Next, add two string fields to Speedo.DB: Hint and
Glyphfile. These correspond to the Hint and Glyph proper-
ties. Make the Hint field a key field. We’ll use this key
later to remove SpeedButtons from the toolbar. Figure 3
shows the structure of this table during a Database
Desktop session. After you create the table, set the table
component’s TableName property to Speedo.DB
(see Figure 4).
Unit Variables
When you create a new form or use the form in the default
project, Delphi creates a form variable in the var section of
the form’s unit:

var
Form1: Tform1;

Add the following variables to that var section:

NewSpeedButton: TSpeedButton;
ButtonNum : Integer;
ButtonList : TList;
RemoveButton : Integer; { test flag }

These variables will be visible throughout the unit:
• NewSpeedButton is a TSpeedButton component.
• ButtonNum is a SpeedButton counter.
• ButtonList maintains the list of SpeedButtons on the toolbar.
• RemoveButton is a flag that enables a SpeedButton click

event to perform differently depending on how the flag is
set. (We’ll discuss this flag in detail later.)

The complete listing of the sample application is shown in
Listing One beginning on page 21. Please refer to it as we
step through the code and discuss its more interesting aspects.
SEPTEMBER 1995

Figure 3: A Database Desktop session. This is the structure of the
Speedo table (Speedo.DB).
The FormCreate Event Procedure
The FormCreate event procedure is one of the first events
that occurs when you run an application. Thus, it’s a good
event for initializing variables and performing other initial-
ization tasks. In the sample application, when the form
opens we’ll create a list to hold the toolbar’s SpeedButtons,
reset ButtonNum to 0, and get the previous session’s buttons
from the table and load them onto the toolbar.
GetButtonsFromTable
The GetButtonsFromTable procedure opens the Speedo.DB
table, moves to the first record in the table, reads the Hint
and Glyphfile fields, and then creates new SpeedButtons
based on those fields until the end of file is reached.

Note that the procedure uses a try...finally block. It’s used
because at least three things can go wrong in this procedure:
the table open can fail, the table read can fail, and the
CreateNewSpeedButton procedure can fail. If any of these fail-
ures occur, we’d like to ensure that the table is closed. Note
that if we try to close a table that isn’t open, it’s no problem
(no error occurs).

Why use a try...finally block as opposed to a try...except
block? In a try...finally block, the finally part of the block is
always executed. No matter what happens in
GetButtonsFromTable, we want to close the table.
Creating a New SpeedButton
The CreateNewSpeedButton procedure is the heart of the
GetButtonsFromTable procedure. CreateNewSpeedButton relies
on a very interesting generic Object Pascal type,
TNotifyEvent.

TNotifyEvent is a type of event that notifies a component
when a specific event occurs. OnClick for example, is of type
TNotifyEvent, and it notifies a control that a click event
occurred on the control.

When a user presses a key or clicks the mouse, an event
occurs. Windows sends this event to the window or object
that was the focus of the key press or mouse click. For exam-
ple, if the click occurs on a SpeedButton, you determine the
Delphi INFORMANT ▲ 18

On The Cover

Figure 5: A file browser dialog box is displayed when Buttons | Add
button is selected. In this manner, the user can associate a file with
the button.
response your application makes by attaching code to the
OnClick event procedure for the SpeedButton.

But how do you specify behavior for an OnClick event proce-
dure that you’re adding at run-time? You can assign an
OnClick event procedure to any TNotifyEvent type that has
the following form:

type
TNotifyEvent = procedure(Sender: TObject) of object;

Sender indicates the object that generated the event, and pro-
cedure can be any procedure. You create specific TNotifyEvent
types for any descendent of TObject (e.g. menu items,
SpeedButtons, etc.) by specifying the Sender type:

type
TSpeedButtonNotifyEvent =

procedure(Sender: TSpeedButton) of object;

After you’ve defined a TSpeedButtonNotifyEvent type, you can
declare a variable of TSpeedButtonNotifyEvent type, assign a
procedure to the variable, create a new SpeedButton, and
assign its OnClick event procedure to a TNotifyEvent type (in
this case, a TSpeedButtonNotifyEvent type):

var
EventName: TSpeedButtonNotifyEvent;

begin
EventName := GenericSpeedButtonClick;
NewSpeedButton := TSpeedButton.Create(Self);
NewSpeedButton.OnClick := TNotifyEvent(EventName);

end;

This sequence is the crux of the CreateNewSpeedButton proce-
dure. It begins with a local var declaration of a
TSpeedButtonNotifyEvent. It then uses a try...except block to
attempt the creation of a new SpeedButton. Why use a
try...except block? The statement:

NewSpeedButton.Glyph.LoadFromFile(GlyphFile);

attempts to load a bitmap from a file. It’s possible that this
file doesn’t exist or contains an error. The try...except
block tests for an EInOutError in the except part of the
block. [For more information regarding try...except blocks
and exception handling, see Gary Entsminger’s article
“Exceptional Handling” in the June 1995 Delphi
Informant.]

The CreateNewSpeedButton procedure creates a new
SpeedButton, sets the properties of several SpeedButtons,
including the location (the Left property) of each SpeedButton
based on the current button number and the Hint property, and
adds the newly created SpeedButton to the button list. It then
specifies an event name (GenericSpeedButtonClick), and sets the
SpeedButton OnClick event to the GenericSpeedButtonClick. The
try...except block ensures that if there’s a problem with any of
these details that the application can recover.
SEPTEMBER 1995
(Note that this code assumes the bitmaps used are all 26
pixels in width. You must make the appropriate adjustment
to the assignment statement for NewSpeedButton.Left if
you are using bitmaps of other widths. This code also
assumes that you’re using the 2-image bitmaps supplied in
the \Delphi\Images\Buttons directory as the glyphs.)

The AddButtonsClick procedure handles the chores of display-
ing a file browser dialog box to allow the user to associate a
file with a button (see Figure 5). It then displays a browser
again so the user can select a glyph for the button.
GenericSpeedButtonClick
At the heart of the CreateNewSpeedButton procedure is the
GenericSpeedButtonClick procedure. It uses the Sender para-
meter to determine which object (i.e. which SpeedButton)
generated the event. In the sample application, the Sender
is everything. If we know the Sender, we know which
SpeedButton’s corresponding Hint property to read. Also,
as mentioned earlier, Hint contains the file to execute.

GenericSpeedButtonClick is a bit complex because of the
RemoveButton flag (variable) mentioned (and created) earli-
er. While designing this application, I encountered a prob-
lem. How could I provide a way for users to remove a spe-
cific SpeedButton? One possibility was to show the user a
list of available SpeedButton hints. For example, after the
user selects a hint from the list, that hint could be matched
to its corresponding SpeedButton and deleted. This works,
but required more work than I preferred.

Therefore, I devised a simple, quicker alternative. The user
selects a button to remove by clicking on it. However, we
also want the user to be able to click on a SpeedButton
and execute a file. That’s where the RemoveButton variable
comes in. If the user selects Buttons | Remove button, the
RemoveButton flag is turned on. Otherwise, it’s off and the
toolbar executes the file.
Delphi INFORMANT ▲ 19

On The Cover

Figure 6 (Top): Selecting Buttons |
Remove button displays this information
dialog box. Figure 7 (Bottom): This mes-
sage is displayed when you click the No
button on the Information dialog box
shown in Figure 6.
If the flag is on, the
toolbar asks the user
if the button is to be
removed. It does this
by displaying an
Information box with
Yes and No buttons
(see Figure 6). If the
user selects Yes, the
button is removed
from the table and
list (freeing memo-
ry). The toolbar
application then
immediately returns
to run mode by turn-
ing the flag off (see
Figure 7). Thus, the
OnClick event is
assigned at run-time,
and has two func-
tions depending on
the setting of the
RemoveButton flag.
Let’s quickly look at the remaining custom methods.
DeleteItemFromTable uses the existing key of a table to find
an item to delete. FreeButtons traverses the button list,
releasing the memory allocated to each SpeedButton and
removing the SpeedButton from the button list.
Gary Entsminger is the author of The Tao of Objects, an Introduction to Object-orient-
ShellExecute
The last statement in GenericSpeedButtonClick calls the
ExecuteFile method. It converts the Pascal strings for Command,
Params, and WorkDir to the null-terminated strings required by
the Windows API function ShellExecute. It then invokes
ShellExecute to open the file.

If ShellExecute is asked to open a file, it runs the file if it’s an
executable. Otherwise, it opens the file. Optionally, you can
ask ShellExecute to print a file.
SEPTEMBER 1995
Staying On Top
Finally, let’s wrap up the application by adding Normal and
AlwaysOnTop menu click event procedures. These allow the
application to either “float” above all other windows on the
desktop or to behave normally.
In Visual Basic, you must call the Windows API to create a
floating form. However, in Delphi a floating form is a snap.
Simply change the form’s FormStyle property to either
fsStayOnTop or fsNormal. Then, to keep the user informed of
the form’s status, place a check next to the active menu item.
The FormClose Event Procedure
The FormClose event procedure occurs when you close a form
(or a single-form application). Thus, it’s a good event for
cleanup tasks. In this application, when the form closes we’ll
release the memory allocated to the button list.

Conclusion
There’s another way you can go with this of course. Instead
of using a Paradox table to hold values between sessions, you
could use an .INI file. Both approaches are fine, although
the Paradox table does require a lot of overhead (the Borland
Database Engine, or BDE) if you want to distribute the tool-
bar as part of an application and don’t need the BDE for
anything else. [For a detailed description of how to imple-
ment an .INI file using Delphi, see Douglas Horn’s article
“Initialization Rites” in the August 1995 Delphi Informant.]

And that does it. Have fun with this one, and if you cus-
tomize the application, tell me about it. ∆

This article is adapted from material for Gary Entsminger’s
forthcoming book The Way of Delphi (Prentice-Hall).

The demonstration program referenced in this article is available
on the 1995 Delphi Informant Works CD located in
INFORM\95\SEP\GE9509.
Delphi INFORMANT ▲ 20

ed Programming, 2nd ed. (M&T 1995) and Secrets of the Visual Basic Masters, 2nd
ed. (Sams, 1994). He is currently working on The Way of Delphi, an advanced Delphi
book for Prentice Hall, and is Technical Editor for Delphi Informant. He can be reached
on CompuServe @71141,3006.

On The Cover
Begin Listing One: Toolbar.PAS
unit Toolbar;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls,
Buttons, Menus, ShellAPI, ExtCtrls, DB, DBTables;

type
{ Define a SpeedButton Notify Event type }
TSpeedButtonNotifyEvent =

procedure(Sender: TSpeedButton) of object;
TForm1 = class(TForm)

MainMenu1: TMainMenu;
Style1: TMenuItem;
Normal1: TMenuItem;
AlwaysOnTop1: TMenuItem;
Buttons1: TMenuItem;
OpenDialog1: TOpenDialog;
Panel1: TPanel;
Table1: TTable;
AddButtons: TMenuItem;
Removebutton1: TMenuItem;
{ events }
procedure Normal1Click(Sender: TObject);
procedure AlwaysOnTop1Click(Sender: TObject);
procedure AddButtonsClick(Sender: TObject);
procedure Removebutton1Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormClose(Sender: TObject;

var Action: TCloseAction);
private

{ Private declarations }
procedure CreateNewSpeedButton(ButtonNum:Integer;

NewApp: string; GlyphFile: TFileName);
procedure SaveSpeedButton(ButtonNum: Integer;

NewApp: string; GlyphFile: TFileName);
procedure GetButtonsFromTable;
procedure DeleteItemFromTable(Command: string);
procedure FreeButtons;
procedure ExecuteFile(Command,Params,WorkDir: string);
{ Private generic event handler }
procedure GenericSpeedButtonClick(Sender: TSpeedButton);

public
{ Public declarations }
end;

var
Form1: TForm1;
NewSpeedButton: TSpeedButton;
ButtonNum : Integer;
RemoveButton : Integer; { Test flag }
ButtonList : TList;

implementation

{$R *.DFM}

{ Form open and close events }
{ When the form opens, create a list to hold the

SpeedButtons, reset the button count to 0, and
get previous session's buttons from a table. }

procedure TForm1.FormCreate(Sender: TObject);
begin

ButtonList := TList.Create; { Create SpeedButton list }
ButtonNum := 0;
GetButtonsFromTable;

end;

{ When the form closes:
* release the memory allocated to the button list. }

procedure TForm1.FormClose(Sender: TObject;
var Action: TCloseAction);
SEPTEMBER 1995
begin
{ Free the SpeedButton list }
ButtonList.Free;

end;

procedure TForm1.GetButtonsFromTable;
var

NewApp: string;
Glyphfile: TFileName;

begin
try

Table1.Open;
Table1.First;
while not Table1.EOF do

begin
ButtonNum := ButtonNum + 1;
NewApp := Table1.FieldByName('Hint').AsString;
GlyphFile :=

Table1.FieldByName('GlyphFile').AsString;
CreateNewSpeedButton (ButtonNum, NewApp, GlyphFile);
Table1.Next;

end;
finally

Table1.Close;
end;

end;

{ Generic execute file routine }
procedure TForm1.ExecuteFile(Command, Params, WorkDir:

string);
begin

{ Convert Pascal string to Null-termintated strings }
Command := Command + #0;
Params := Params + #0;
WorkDir := WorkDir + #0;
{ Run/open application/file }
if ShellExecute(Application.MainForm.Handle, 'Open',

@Command[1], @Params[1], @WorkDir[1],
SW_SHOWNORMAL) < 32 then

MessageDlg('Could not execute ' + Command, mtError,
[mbOK],0);

end;

procedure TForm1.FreeButtons;
var

I : Integer;
begin

{ Go through the button list until the end is reached;
* release the memory allocated to each SpeedButton
* remove the button from the list. }

for I := 0 to ButtonList.Count do
begin

NewSpeedButton := ButtonList.Items[0];
NewSpeedButton.Free;
ButtonList.Remove(NewSpeedButton);

end;
ButtonNum := 0;

end;

{ Use the existing key to find the item to delete;
or alternatively define a key here. }

procedure TForm1.DeleteItemFromTable(Command: string);
begin

Table1.Open; { Open table }
Table1.FindKey([Command]); { Use existing key }
Table1.Edit; { Hint field is the key }
{ Delete this item, button.hint, from table }
Table1.Delete;
Table1.Close; { Close table }

end;
{ Generic SpeedButton click can either set up a new

SpeedButton toolbar or execute a file }
procedure TForm1.GenericSpeedButtonClick(

Sender:TSpeedButton);
Delphi INFORMANT ▲ 21

On The Cover
var
Command, Params, WorkDir: string;

begin
{ Get the file name and path from hint }
Command := Sender.Hint;
{ Edit table - remove button }
if RemoveButton = 1 then

begin
DeleteItemFromTable(Command); { Remove button }
FreeButtons; { Remove buttons, release memory }
GetButtonsFromTable; { Reload new table of buttons }
RemoveButton := 0; { Reset button count }
ShowMessage('Returning to Run Mode');

end
else

{ Execute file }
begin

Params := '';
WorkDir := '';
ExecuteFile(Command, Params, WorkDir);

end;
end;

procedure TForm1.CreateNewSpeedButton(ButtonNum: Integer;
NewApp: string; GlyphFile: TFileName);

var
EventName: TSpeedButtonNotifyEvent;

begin
try

NewSpeedButton := TSpeedButton.Create(Self);
NewSpeedButton.Glyph.LoadFromFile(GlyphFile);
NewSpeedButton.Parent := Panel1;
NewSpeedButton.Left := (ButtonNum - 1) * 26;
NewSpeedButton.Top := 0;
NewSpeedButton.Hint := NewApp;
NewSpeedButton.ShowHint := True;
NewSpeedButton.NumGlyphs := 2; { Assume 2-image bitmap }
ButtonList.Add(NewSpeedButton); { Add instance to list }
{ Assign new event, created at runtime, to the

SpeedButton OnClick event, GenericSpeedButtonClick }
EventName := GenericSpeedButtonClick;
NewSpeedButton.OnClick := TNotifyEvent(EventName);
except

on E: EInOutError do
begin

MessageDlg('Unable to create SpeedButton. ' +
E.Message, mtInformation, [mbOK],0);
{ Free button resources }
NewSpeedButton.Free;
ButtonNum := ButtonNum - 1;

end;
end;

end;

{ Use the Open Dialog to get a file name and a
corresponding bitmap for the new SpeedButton to be
associated with the file. }

procedure TForm1.AddButtonsClick(Sender: TObject);
var

NewApp: string;
begin

OpenDialog1.Title :=
'Select a file to associate with a button.';

OpenDialog1.Filter := 'All files|*.*';
OpenDialog1.FileName := '';
if OpenDialog1.Execute then

begin
NewApp:= OpenDialog1.FileName;
if FileExists(NewApp) then

begin
OpenDialog1.InitialDir := '';
OpenDialog1.Title :=

'Select a glyph for the SpeedButton.';
OpenDialog1.Filter := 'Bitmap files|*.bmp';
SEPTEMBER 1995
OpenDialog1.FileName := '';
if OpenDialog1.Execute then

begin
ButtonNum := ButtonNum + 1;
CreateNewSpeedButton(ButtonNum, NewApp,

OpenDialog1.FileName);
SaveSpeedButton(ButtonNum, NewApp,

OpenDialog1.FileName);
{ Set Remove Button flag to false }
RemoveButton := 0;
ShowMessage('In Run Mode');

end;
end

else
ShowMessage('File does not exist.');

end;
end;

{ Remove button click event simply sets a remove flag,
which the generic click event checks before deciding
how to carry out the click event }

procedure TForm1.Removebutton1Click(Sender: TObject);
begin
if MessageDlg('Remove next selected button?',

mtInformation, [mbYes, mbNo], 0) = mrYes then
RemoveButton := 1

else
begin

RemoveButton := 0;
ShowMessage('Returning to Run Mode');

end;
end;

{ Add each new SpeedButton to end of SpeedButton table }
procedure TForm1.SaveSpeedButton(ButtonNum: Integer;

NewApp: string; GlyphFile: TFileName);
begin

with Table1 do { Add to Speedo table }
try

Open;
Last; { Move to the end of the table. }
Insert;
FieldByName('Hint').AsString := NewApp;
FieldByName('GlyphFile').AsString := GlyphFile;
Post;

finally;
Close;

end;
end;

{ Form style click event procedures: an AlwaysOnTop click
makes the form 'float' above all other forms and a
Normal click allows the form to behave normally }

procedure TForm1.Normal1Click(Sender: TObject);
begin

AlwaysOnTop1.Checked := False;
Form1.FormStyle := fsNormal;
Normal1.Checked := True;

end;

procedure TForm1.AlwaysOnTop1Click(Sender: TObject);
begin

Normal1.Checked := False;
Form1.FormStyle := fsStayOnTop;
AlwaysOnTop1.Checked := True;

end;

end.

End Listing One
Delphi INFORMANT ▲ 22

SEPTEMBER 1995

Leaving PB Behind
Delphi vs. PowerBuilder: A Blow-by-Blow Comparison

Informant Spotlight
Delphi / Power Builder

By Thomas Miller
T he perfect enterprise development tool would allow us to program
through telepathy, debug the program, and automatically write the docu-
mentation and on-line help. It would compile and optimize the program

in Assembler, be operating-system-level compliant with Windows, Windows NT,
Macintosh, OS/2, and 10 flavors of UNIX. It would also support all databases
through native APIs, and integrate seamlessly with workgroup products.

Back to reality. We buy programming tools to avoid tedious programming in C/C++ and
assembler and facilitate timely delivery of software. Currently however, there are no full
fledged enterprise development tools on the market.

We may begin to see these all-encompassing tools that support multiple platforms, multiple
databases, group productivity, and rock solid compiled code in two or three years. For now,
however, PowerBuilder 4.0 (PB) from PowerSoft, Inc. is “king of the hill”. Borland’s Delphi is
the new kid in town and a more-than-able challenger. Yet, some developers are apprehensive
about using Delphi for several reasons: 1) Delphi is a new product, 2) Borland has had its
much-publicized problems, and 3) PB is well-accepted.
It’s my contention that Delphi is the best Windows development tool
on the market. It’s fast, easy-to-use, and has the world-renowned Pascal
language in its pedigree. For those who aren’t convinced of Delphi’s
capabilities, this article is for you. It’s time for you to leave PB behind.
Painters and Palettes
PB’s integrated development environment (IDE) is divided into
“Object Painters” (see Figure 1). These are the building blocks used
to create an application. On the other hand, Delphi uses forms and
an object palette metaphor (the Component Palette) for development
(see Figure 2). As any good programmer will tell you: “I can get the
system to do anything you want.” For the purposes of this discus-
sion, however, only those functions that are specifically designed into
each development system are being compared.

Let’s compare PB to Delphi using PB’s painters as the “jumping off point”.

The PB Application Painter creates an application shell, opening script,
library paths, and allows you to set the application icon. Delphi creates
Delphi INFORMANT ▲ 23

Figure 1 (Top): The PowerBuilder 4.0 opening screen. The floating
palette contains icons that open the major painters used by
PowerBuilder. Figure 2 (Bottom): Delphi’s opening screen. Delphi
uses a single-document interface (SDI) that is compliant with Windows
95. The system window, located at the top of the screen, contains the
menu, Speedbar, and a Component Palette. The Object Inspector is on
the left. It allows you to set an object’s properties and events. The form
is on the right. It allows you to design a window of an application.

Informant Spotlight
a project shell, opening code, allows you to set the application
icon, and default help file for context-sensitive help.

Delphi doesn’t support libraries in the same sense as PB. In
PB, the libraries are used to segregate the code into smaller
manageable pieces of deliverable code. In Delphi, they are
extensions to the development environment and are referred
to as the Visual Component Library (VCL). Not all objects in
the VCL are visual. To break up large projects, Delphi sup-
ports DLLs with restrictions which are discussed later in this
article. PB doesn’t directly support context-sensitive help.

The PB Project Painter allows for configuring a macro for com-
piling an application. Delphi enables you to configure compiler
options, linker options, and directories for additional resources.
SEPTEMBER 1995
This is a new painter for PB (version 4) and was sorely needed
for compiling large projects. Compiling code has five separate
steps. And, compiling 15MB of source code can take three hours
to complete. If you change one object in the program, PB highly
recommends you recompile the entire program. In addition, PB
recommends compiling only on your local hard drive, and turn-
ing off Windows SMARTDrive. When you compile in PB, you
are really pre-compiling for the p-code interpreter. New releases
of the interpreter fix many bugs, but inevitably introduce new
ones. In addition, sub-routines that worked fine for months are
suddenly non-functional.

In contrast, Delphi is fast, easy, and specifically supports incre-
mental re-compiles. A 15MB source program will compile in
about 10 to 15 minutes. The compiler options allow you to set
extra debugging features for in-house testing and then later turn
them off for distribution of your program. This allows for
tighter, faster deliverable programs that are true EXEs and DLLs.

The PB Window Painter assembles various other objects or
controls (including data window controls) into a functioning
window. The Delphi form is an object where you can assem-
ble other objects to create a functioning window. The func-
tionality of these two objects is similar.

The PB Menu Painter enables you to design and program
menus (main menus). Delphi has a Menu Designer for creat-
ing MainMenu and PopupMenu components. PB enables you
to make menu items active, inactive, visible, or hidden at run-
time. Delphi gives you complete control of the menu at run-
time to include adding, deleting, changing and merging par-
ent, and child menus.

The PB Structure Painter enables you to graphically declare a
structure. Delphi refers to the structure data type as a record.
There is no graphical wizard to aid in declaring this type of vari-
able. Delphi does not facilitate any graphically-assisted coding.
This would require an extra step to convert from the graphical
representation to Object Pascal before the code is compiled.
This is a trade off between ease-of-use and speed and reliability.

The PB Preference Painter enables you to set many of the
preferences used by PB (see Figure 3). Delphi Environment
Options allow you to set many preferences for the Delphi
IDE (see Figure 4).

PB presents more options under its Preferences Painter.
Unfortunately, most are codes and difficult to set. Delphi
gives you an adequate number of environment settings that
are easy to access, and you are always welcome to dig into
the source code to change any or all defaults.

The PB Database Painter allows you to create and manipu-
late tables and columns, and set extended attributes for
columns in a table. The Database Painter also allows you to
browse and manipulate data. The Delphi Database Desktop
supports data browsing and manipulation.
Delphi INFORMANT ▲ 24

Informant Spotlight
PB’s Database Painter is one of the best tools available for cre-
ating a database from scratch. It supports indexes, keys, and
extended column attributes. If you have a system that is set in
stone, the extended attributes are wonderful.

If you’re in a rapid application development situation (i.e.
making little changes all the time), the modifications you
make to existing extended attributes are not automatically
updated to objects that already use the extended attributes.
Suppose you create an extended attribute for an Employee
Type drop-down list box. When you originally set the extend-
ed attribute there are three employee types. The extended
attribute is then associated to three different windows. Later,
the human resource department tells you that there are four
Employee Types. You fix the extended attribute, recompile the
program, and drop down the Employee Type drop-down list
box to find only three types. You are required go to each con-
trol and manually refresh it before compiling.

The extended attributes are maintained in the active database
type. If you start off with Sybase, this makes it almost impos-
sible to use the data window for Oracle. PB stores informa-
tion about databases in its own system catalogs. It creates cat-
alogs in the actual database. For example, if you are using
Sybase, it creates its system tables in the Sybase database. This
is somewhat similar to setting up aliases for databases in the
BDE, but is more messy and requires more set-up work
SEPTEMBER 1995

Figure 3 (Top Left): PB’s
Preferences Painter.
Figure 4 (Bottom):
Delphi’s Environment
Options dialog box.
because it creates its own tables in each of the databases. This
makes it difficult to “point” to new databases “on-the-fly”.
The advantage with extended attributes is that a lot of data
validation rules can be done at database setup time.

This is a perfect example of acting object-oriented versus
being object-oriented. Delphi lacks a database table mainte-
nance tool. Both systems have capable browsers.

The PB Database Profile Painter: This allows you to set your
database connection information. Most databases require a white
paper to implement. The Borland Database Configuration Utility
is simple and straightforward. PB’s database connection is difficult
to set up, and not all the ODBC drivers work consistently. PB
does include distributable ODBC drives. With Delphi you will
have to purchase them separately. There have been very few com-
plaints about configuring the Borland Database Engine (BDE).

The PB Query Painter (4.0) features an updated interactive
wizard to assist in creating a SQL statement (see Figure 5).
The Query Painter is well-integrated with other data manip-
ulation tools. Delphi’s Visual Query Builder is an interactive
utility that assists in creating a SQL statement (see Figure 6).
PB has designed an intuitive and easy-to-use interface.
Delphi’s is somewhat complex to use, even with the manuals.

The PB Pipeline Painter allows translation from one vendor
database to another. Delphi’s BatchMove Component also
allows translation from one vendor database to another. PB
and Delphi are functionally 95 percent the same.

The PB Function Painter allows for graphically registering a
function. Delphi has no graphical “wizard” to aid in register-
ing functions. (As stated earlier, Delphi does not facilitate any
graphically-assisted coding.)

The PB Library Painter enables hierarchical graphical display
of objects grouped in libraries. Delphi graphically displays its
programming units.

One of Delphi’s weakest points is its inability to support dis-
tributable libraries. This is only a problem for very large pro-
jects (50 or more windows). In Pascal distributable overlays
are referred to as “overlays”, and are not currently supported
in Delphi or Object Pascal. Unfortunately, PB’s libraries don’t
serve one of their primary functions, which is compiled code
segregation. As mentioned earlier, when you make a change
to one library, PB recommends you re-compile and redistrib-
ute the entire system. PB’s libraries are not truly object-ori-
ented, and are not designed to be shared between multiple
programs. This defeats another major benefit of libraries.

The PB User Object Painter graphically enables you to
program extensions to the programming environment, and
access the Windows API and non-visual objects. PB’s user
objects are a very crude equivalent of Delphi’s components,
but because PB is not object-oriented, you can’t create real
Delphi INFORMANT ▲ 25

Figure 5 (Top): PB’s Query Builder. Figure 6 (Bottom): Delphi’s
Visual Query Builder.

Informant Spotlight
components. Nevertheless, user objects help with standard-
izing and re-use. Non-visual user objects are PB’s equivalent
of classes. Delphi supports these programming capabilities
non-graphically. In addition, Delphi extends the program-
ming environment through the VCL. There are also non-
visual components.

PB has tried to make advanced programming graphical. It just
hasn’t worked. The user-objects are difficult and complex to
implement. Delphi has taken a more practical, direct approach
and requires you to write straight code and place it appropriately.
Writing in assembler, accessing DLLs, and writing to the
Windows API is complex enough without adding a graphical
encapsulation layer.

This covers most of the major sub-systems in PB and Delphi
that are easily compared on a direct basis. Now we’ll compare
data access, events, and scripting. This is more of an “apples
and oranges” type comparison.
PB Data Access, Events, and Coding
If you have ever attended a PB seminar you have definitely heard
that “The DataWindow is our crown jewel.” Unfortunately,
these days it’s a chipped and cracked crown jewel.

The DataWindow is easy to work with and can create a data
access window quickly. It is arguably the most flexible data-
SEPTEMBER 1995
base layout tool on the market. It does all the coding for you
in the background, prints reports, and allows easy sorting and
filtering. For a very simple, direct data access window, it’s
tops. Now let’s look at the downside.

The DataWindow will not support many non-data-related
objects. For example, you can’t place a button or an edit box
on the DataWindow. This can make it difficult to design an
effective graphical user interface (GUI) for your end-user.

The DataWindow uses a data replication algorithm to access
data. This is a major problem in several areas. First, it takes
a long time to retrieve all the data to the workstation and
problems with synchronization can arise. For example, if the
replication gets out of sync with the server database, you
have to retrieve the data from the server again. Large
amounts of data replicated locally consume huge amounts of
resources and can slow the workstation to a crawl. And,
when two DataWindows are sharing the same data, you
have to manage the synchronization manually. Furthermore,
the SQL code is written for you, making it difficult to
change it programmatically.

When distributing an off-the-shelf program, it’s difficult to
programmatically set the database owner. PB writes extended
attributes about the database into the DataWindow. When
you change a column attribute (i.e. size or not null) in the
database, you have to manually fix each DataWindow access-
ing the table to recognize the table change. This is because
the DataWindow is not truly object-oriented.

Also, the DataWindow is not always sensitive to programmat-
ic changes to its buffers (e.g. window “A” assigns a value to
column “1” in window “B”). In advanced programming, the
DataWindow has three data buffers that must be managed.
Suddenly, the DataWindow is not the “do-all automatic data-
base interface” tool it claims.

In PB, the DataWindow represents most of the user inter-
face. It becomes important for the DataWindow to be flexi-
ble in handling design issues in the development environ-
ment and at run-time. One word for the PB faithful:
dwModify. Need I say more?

For the rest of you, dwModify is a C++/Assembler type syn-
tax to modify attributes of the DataWindow programmati-
cally. It is not for the faint of heart! PB has converted much
of the old DataWindow command structure to a BASIC-
type command structure in version 4. However, there is still
enough functionality available through the old, arcane, syn-
tax of dwModify to be annoying.

Windows is an event-driven operating system. Therefore,
it’s important that any Windows development tool properly
trigger events and related code. PB is sorely lacking in this
area. PB recommends using events sparingly. This is partly
due to the large amount of overhead associated with events.
Delphi INFORMANT ▲ 26

Informant Spotlight
The main reason, however, is that many PB events do not
interact well with each other. As an illustration, set up a sim-
ple DataWindow attached to an empty table. Next, place
message boxes in each of the following DataWindow’s events:
EditChanged, ItemChanged, ItemFocusChanged, and
RowFocusChanged. As you add the first row to the
DataWindow, the events will fire off in one order. As you add
the second row to the DataWindow, the events will fire in a
second (and different) order, and when you delete the two
rows to leave the DataWindow blank, the events fire in a
third, different order.

GetFocus (pre-event) and LoseFocus (post-event) are two crit-
ical types of events in Windows programming. Remove these
two event types from an event-driven system and you have a
structured system (DOS). PB has a major problem triggering
post events. The DataWindow is an object with related pre-
events and post-events, and data fields are not objects and do
not directly support any events. This is another example of
acting object-oriented instead of being object-oriented.

As an example, set up a simple DataWindow with a field
requiring verification against a second table. (An order form
with part numbers.) In the ItemChanged, ItemFocusChanged,
and LoseFocus events, enter the following script:

if dw_1.GetColumnName() = "Part_Number" then &
MessageBox("EventName","Verify Part Number in Parts Table")

Now add a button to the window. We’ll use this to change
focus from the DataWindow to the Button. The message box
represents a subroutine to verify that the entered part number
exists and to retrieve associated data from the parts table (i.e.
price, cost, description, etc.) Enter a part number in the field
and click the button. What happens? Nothing. Let’s see why.

PB does not run any code unless an object has focus. Using
this premise, we’ll analyze why each event failed to give us the
desired result:
• ItemChanged Event doesn’t run because

GetColumnName doesn’t return Part_Number because
the button has focus.

• ItemFocusChanged doesn’t run because GetColumnName
doesn’t return Part_Number because the button has focus.

• LoseFocus doesn’t run because when the code runs, the
button has focus and GetColumnName doesn’t return
Part_Number.

Some of you may ask: “Why aren’t you using the EditChanged
event?” This would work, but consider that for each keystroke,
the system would verify the part number and display a dialog
box with the message “Part number not on file”. A 10-charac-
ter part number would return nine error messages. In short,
PB’s inability to deal with post events is a major problem and
totally unacceptable in an event-driven environment.
SEPTEMBER 1995
Script (code) in PB is easy, direct, and conforms to industry
standards. If you are familiar with BASIC, Visual Basic, C,
C++, FORTRAN, or dBASE, you can quickly settle into the
syntax provided by PB. PB provides over 600 functions, allows
you to add additional functions through registering external
DLLs, and allows access to the Windows API. FUNCky
Library, available from PowerSoft, is an add-on function pack
that provides more than 500 functions.
Client/Server Data Access
For quite a while, PB has been renowned for its database
access (the DataWindow facilitates this access). The basic
database access of the DataWindow has not changed since
Version 2 was released more than three years ago.

PB replicates data from the server database to the workstation.
This is the first problem. Client/server database engines were
specifically designed to return blocks of data as needed. Let’s
say you send a query to the database that has a 5,000 record
result set. In PB, it will return all 5,000 records to the local
workstation before any operations can be performed on the
data. RetrieveAsNeeded (a function that only returns enough
data to fill the screen) is simply a ruse to make the screen look
active. Then, in a separate database call, PB requests the rest of
the data. Either way, you often have to wait as long as 15 min-
utes until you can access the data set on the screen.

Delphi doesn’t directly support sorting or filtering. This is
a mixed blessing. Ideally, you want to sort and filter at the
server to save network overhead and not burden the work-
station. On the other hand, you cannot dynamically
change the sorting or filtering without re-querying the
database. This will depend on the functionality required by
your application.

Most client/server systems are designed to return a specific
amount of data chunks, thereby optimizing data access.
Suppose you have a Novell Network on an Ethernet architec-
ture running Oracle. If you set the Ethernet Packet size to
16K, the Novell disk block size to 16K and the Oracle work-
station requester data retrieve parameter to 128K, you have
just optimized the transport of data from the server to the
workstation. Assume our 5,000-record query represents
2000K of data. When the workstation reaches the last record
in the first “chunk” of data returned (128K), it then requests
the next chunk of data (128K). This increases overall speed,
reliability, and decreases the possibility of the workstation
data set getting out of sync with the server database.

New technology and other products have easily eclipsed PB’s
capabilities. ODBC is now a mature API and supported by all
popular development environments and database systems.
Many companies have developed general database access engines
that are flexible and can be attached to multiple development
environments.
Delphi INFORMANT ▲ 27

Informant Spotlight

Figure 7 (Top): A Delphi form with the following components:
DataSource, Table, PrintDialog, ScrollBox, RadioGroup, two Panels,
BitBtn, and an OLEContainer. Figure 8 (Bottom): The object hierarchy
for the form shown in Figure 7.

Panel
Components

OLEContainer
Component

Scroll Box
RadioGroupPrintDialog

Component
Table

Component

ent

ource
nent
Delphi Data Access, Events, and Coding
Delphi is a new breed of tool featuring a general data-
base access engine that works under the traditional
client/server paradigm. In addition, Delphi sports an
IDE that is truly object-oriented.

When you first start Delphi, the most noticeable dif-
ference is the lack of individual painters. Delphi is a
“top-down” development tool. First you open a form
(window), and then place objects on the form: panels,
buttons, edit boxes, and/or other non-visual objects
(see Figure 7). The objects you add to a form can
then contain their own associated objects. Thus the
parent/child/grandchild etc. relationship is created
(see Figure 8).

If this sounds like more work — it is! To lay out a sim-
ple window minus the code may take 15 minutes to do
in PB, and as much as 45 minutes in Delphi. However,
don’t get discouraged — there are numerous gains in
other areas of Delphi that more than compensate for the differ-
ence in time and capability.

Delphi’s Component Palette is the centerpiece of its develop-
ment environment. Some 75 objects, visual and non-visual,
are available from this palette. The palette is broken into the
following general categories: Non-Data Aware Components,
Data Access Components, Data Aware Components,
Windows Non-Visual Dialog Components, and System
Components.

Individual components worth special mention are:
• Scrolling Panel: This allows for controlling the scroll bars

when the panel shrinks vertically or horizontally smaller
than a user-defined threshold. (Not available in PB.)

• TabPages: This is two components working together
allowing multi-page panels with tabs at the bottom of the
page, similar to a spreadsheet. (Not available in PB.)

• TabbedNotebook: This component has multiple pages with
large folder-style tabs at the top of the page (see Figure 9).
(Not available in PB.)

• DataSource: This is an object that, when linked with
supporting objects, creates the data connection to the
database. It automatically manages commits, rollbacks,
adds, saves, deletes, undos and refreshes the data set. (PB
requires extra coding.)

• DBNavigator: A graphical object that controls scrolling,
add, edit, delete, undo, and refresh functions for data
aware controls. (PB requires extra coding.)

• DBLookupList / DBLookupCombo: These two controls
allow you to point to another table for population and, on
selection, return the selected item to the current table and
column. (PB requires extra coding.)

• Dialog Objects: Include Windows File, Save, Font, Print,
Printer Setup, Color Palette, Find, and Find and Replace
dialog boxes. (PB requires extra coding.)

BitBtn
Compon

DataS
Compo
SEPTEMBER 1995
• System Components: These include Timer, PaintBox,
FileListBox, DirectoryListBox, DriveComboBox,
FilterComboBox, MediaPlayer, OLEContainer,
DDEClientConversation, DDEClientItem,
DDEServerConversation, and DDEServerItem. (The
same functionality in PB requires extra coding, or is
not available.)

By using just one of these objects to replace the coding
necessary in PB, you have recovered your lost 30 minutes.
The only object that is missing is a multi-line grid compo-
nent. This is one of the most popular and powerful inter-
face items in PB and the only large hole in the Delphi
GUI design objects repertoire. Delphi’s grid component is
a traditional spreadsheet type interface that only supports
an edit box interface. However, all other design GUI ele-
ments found in PB are directly supported, surpassed, or
easily reproduced with minor programming in Delphi. Of
Delphi INFORMANT ▲ 28

Informant Spotlight

Figure 9:
Delphi’s
TabbedNotebook
component, an
amalgamation of
the TabSet and
Notebook
components.

Figure 10: This Delphi
form shows a DBNavigator
control and an extended
DBNavigator control at
run-time.

Figure 11: An example of an Object Pascal if statement. Notice the
first end keyword is not followed by a semicolon.
course, if you feel there is something lacking, you may
modify and extend any of the existing components, or
acquire a third-party component. There are several third
party grid components that give you some of the function-
ality of PB grids (e.g. those from Woll2Woll and
Orpheus). More important, Delphi and all its components
are written in Object Pascal making Delphi completely
extensible. For example, Figure 10 demonstrates Delphi’s
extensibility with a standard DBNavigator component and
its extended counterpart. Try that with PB!

In Delphi, you control objects through properties and events.
Delphi provides access to properties and events via its Object
Inspector. In Delphi, all properties are in one easy-to-read
dialog box, while PB spreads them across several menu items.

In general, Delphi supports 20 to 25 percent more proper-
ties per object than PB. Setting most properties in Delphi is
usually accomplished through a drop-down list box and can
programmatically be set using the same keywords as found
in the Object Inspector. For instance, the TabStop property
can be either True or False in the Object Inspector. To pro-
grammatically change TabStop to False, the statement is:

TabStop := False

No dwModify and no guessing. If the attribute is supported in
the Object Inspector, it can be controlled programmatically.

PB’s event handling is average at best. Not all items have events
and many events don’t run properly. Delphi’s true object-orient-
ed paradigm has no problems with pre-events and post-events,
or with multiple events interacting with each other. You are free
to program 10 or more events related to one object. Overhead
isn’t an issue with Delphi because the code is compiled into a
true .EXE that will run up to 20 times faster than PB’s p-code.

Delphi’s data access is faster, and more reliable than PB’s. It
requires substantially less coding to set up database access.
SEPTEMBER 1995
Delphi directly supports parent/child table relationships in
the database objects, auto-synchronizes two views of the same
table (the equivalent of PB share data), and even supports
stored procedures.

Conversely, PB only supports stored procedures with cer-
tain databases. Delphi has two data control components:
Table and Query. Table gives you direct access to the entire
table, is fast, and easy-to-implement. The Query compo-
nent allows you to access the table by limiting the result
set with a SQL statement.

There is, however, room for improving Delphi’s Query
component. In PB, SQL statements are executed extremely
fast. Delphi’s Query component seems to “hiccup” once
before it sends the SQL statement to the database server.
Depending on the size of the result set, Delphi’s Query
component is still — hands-down — faster than PB. The
Query component returns result sets to an array — not
variables — and doesn’t support cursors at the database
server. These are all minor inconveniences at best. The
Query component is effective for simple, basic SQL state-
ments. And the StoredProcedure component handles very
complex SQL sub-routines with ease. You will have to be
creative with some SQL sub-routines to avoid putting
them into stored procedures.

Delphi is based on Object Pascal. Object Pascal rivals the
power and flexibility of C/C++, but is strongly typed (restric-
tive variable declaration) to keep you out of trouble. The syn-
tax is different from other mainstream programming tools and
takes some time to get comfortable with. Blocks of code start
with begin and finish with end (see Figure 11). This includes
sub-blocks of code found within if statements. Each statement
ends with a semicolon. This saves you from using the amper-
sand character to continue the line as you must do with PB.

In Delphi, the only place this isn’t true is in the if statements.
Placing a semicolon in the wrong place is similar to placing
an endif (in PB) in the wrong place. In Delphi, this type of
error is much more difficult to find.
Delphi INFORMANT ▲ 29

Informant Spotlight
Large project support is not currently available in Delphi.
You can put modal windows in DLLs which limits you to
search windows, message boxes, and other inconsequential
windows. Your more important main interface window
(MDI Child) cannot reside in a DLL. This is best
described by an excerpt from one of the demo programs
shipped with Delphi: “Note that the TDllForm1 form is
always used modally. Borland does not recommend using a
modeless form from a DLL because the OnActivate and
OnDeactivate mechanisms do not work when control is
transferred between a DLL-owned form and another DLL
or EXE owned form.” In English, this translates to: “The
form called from a DLL does not recognize the parent
form in the EXE as its (the DLL form’s) parent form.”
Theoretically, it is possible for two modeless windows to
have focus at the same time. This DLL problem needs to
be fixed, or Delphi needs to support an old-but-reliable
way to split up an EXE file — libraries.

Object Pascal takes some getting used to. For example, the
Object Pascal case statement only supports ordinal variable
types. It’s disappointing that Object Pascal case statements
don’t support string variables. Also, as you program events in
the source code file, the events are added at the end of the
file. When you get 2000 lines of code, you are jumping all
over the file trying to find related code (the code compiles
fine). The colon/equal sign combination (:=) is the assign-
ment operator, while the equal sign (=) is strictly a compar-
ison operator. On the positive side, once you become com-
fortable with the different syntax, Object Pascal is very
robust. In addition, there is a lot of available shareware and
third-party support to extend Object Pascal’s capabilities.
Thomas Miller is President of Business Software Systems, Inc., a consulting firm spe-
cializing in implementing accounting, distribution, manufacturing, and business man-
agement systems. They are currently working on their own distribution system written
in Delphi and supporting Oracle, Sybase, and Btrieve back-ends. You can reach
Thomas at 76652,2065.
Conclusion
On paper, PB should easily outclass Delphi. It’s a well-round-
ed development environment with easy-to-use, intuitive tools
(i.e. its Painters). Once you start peeling back the pretty face,
however, PB doesn’t look as good. Slow database access, par-
tial support for some databases, a slow p-code interpreter,
compiler problems, and events that don’t run properly (or at
all), are just some of the system-wide problems. In short, PB
doesn’t need more functionality to capture the hearts of pro-
grammers. What’s already there just needs to be fixed!
SEPTEMBER 1995
Delphi is an incomplete development environment and is
missing a database structure maintenance tool. The included
report writer is average at best and the SQL-related tools are
complex and difficult to use. However, Delphi’s core pro-
gramming elements (Windows layout, programming lan-
guage, and database access) are excellent. I would pit Delphi’s
capabilities in these areas against any other tool on the mar-
ket. Compared to PB’s system-wide problems, Delphi only
has five weaknesses in its core area that need to be addressed:
• TQuery objects should initiate faster.
• The Query component must be more flexible and allow

for procedural SQL sub-routines and database cursors.
• Large projects must be supported better by allowing large

EXEs to be divided into libraries, or DLLs should be
allowed to recognize the forms in EXEs as the parent. This
will make systems easier to manage, and increase code reuse.

• A more well-rounded grid component.
• Better OLE support.

Also, PB’s reporting capability is good and Delphi’s is average
at best. (Crystal Reports by Crystal is an excellent reporting
tool and can be used with either product.) I expect some of
the other holes to be filled when the next version of Delphi is
released. Meanwhile you can use PB’s Database Painter until
Delphi has a similar utility.

If your SQL is only average and you rely on wizards to help
with SQL statements, get a book and learn how to program
in SQL. No matter how good the wizard is, you will eventu-
ally have to write a complex SQL statement by yourself.

There isn’t a complete enterprise development tool available,
but for core database programming prowess, Delphi is the
new “king of the hill”. It’s fast, provides easy database access,
a completely object-oriented programming environment, and
features reliable code generation and complete extensibility. ∆
Delphi INFORMANT ▲ 30

SEPTEMBER 1995

Data Validation: Part II
Delphi’s Data-Aware Components

DBNavigator
Delphi / Object Pascal

By Cary Jensen, Ph.D.
L ast month’s article introduced the basics of data validation, and explored
how to apply validation to edit controls not associated with database
tables. This month’s “DBNavigator” continues this discussion by consider-

ing the issues that apply to data-aware components, that is, those that permit
you to edit tables.
Table-Level Validation
Validation can be produced in a number of ways when data-aware controls are involved. The first
line of defense against invalid data lies in the data tables themselves. At a minimum, the data type
of the individual fields in a table prohibit data of an incompatible type from being entered.

For example, a table will not allow letters to be entered into a field when the field type is numeric.
Likewise, fields that are of the type Date or Time require that the entered data conform to partic-
ular characteristics. By comparison, an Edit component accepts any type of alphanumeric data.

The validation provided by table field type is provided by descendants of the TField compo-
nent. These types can easily be seen when you instantiate (create) fields using the Fields
Editor. Figure 1 shows the VendNo field selected in the Fields Editor.
This field also appears in the Object Inspector, where you will notice
that it is a TFloatField component. By default, this component accepts
only numeric values.

Even when you do not explicitly instantiate your fields, Delphi repre-
sents the fields using TField components. Like those you instantiate,
the purpose of these components is to provide the first line of defense
against obviously invalid data.

However, the data type of the fields in a table provide only limited pro-
tection from unacceptable data. For example, while a field may have a
data type of Date and a name of DateOfBirth, unless further steps are
taken, any valid date can be entered. For instance, if the table is
designed to hold the names of a company’s current employees, it’s
unlikely that the date 12/31/1065 would be considered acceptable.

Most table formats provide for further restrictions to be placed on
entered data. Paradox tables, for example, have a feature called validity
Delphi INFORMANT ▲ 31

SEPTEMBER 1995

Figure 1: When a field is instantiated,
a TField descendant is created to rep-
resent the field. These TField compo-
nents provide default validation based
on field type.

Figure 2: An
exception
raised by
Delphi when
an attempt is
made to post
a record con-
taining invalid
data to a
table.

DBNavigator
checks. Using validity
checks you can specify
that dates earlier than
January 1, 1910 (for
example) cannot be
entered into the
DateOfBirth field.

SQL tables provide you
with even greater con-
trol over acceptable val-
ues for fields in the
form of triggers. A trig-
ger is a mechanism on
the database server that
executes a custom code
routine in response to
Figure 3:
A new
form for
validation
demon-
stration.
certain events. For example, you can create a trigger that will
execute a validation routine when any SQL client (such as
Delphi) attempts to post the contents of a changed record (i.e.
save the record to the table). Furthermore, if the code executed
by the trigger determines that the contents of the record being
posted are invalid, the record is rejected and no changes are
made to the database.

The advantages of table-based validation are many. First, the
validation is stored with the table to which it applies.
Consequently, every application that has access to the data is
affected. Second, table-based validation often means that it is
unnecessary to add additional validation to controls on forms.
This is particularly advantageous when the same tables appear
on many different forms in an application.

Table-based validation impacts Delphi applications through
exceptions. When Delphi attempts to post a new or modified
record, the record will only be posted if the record passes all
table-based validation. If the record cannot be posted, an
exception is raised. Figure 2 displays an exception created
when a record violates a minimum value validity check for a
Paradox table.

The exception shown in Figure 2 deserves additional com-
ment. Paradox for Windows developers have come to expect
that field-level validation will occur when a field is departed
(except for Required validity checks that are applied when the
record is posted). In Delphi applications these validity checks
are not tested until the record is being posted, even when
Paradox tables are being used.
Field-Level Validation
There are two basic approaches to field-level validation in
Delphi applications. One is to set the properties of the
field so invalid data cannot be entered, and the second is
to use code to check the data after it has been entered.
These approaches are rarely exclusive. You will often find
yourself applying both techniques, sometimes even to the
same field.
One characteristic that both these techniques share is their need
for you to instantiate (create) the field object. As discussed in a
previous article [Cary Jensen’s “DBNavigator” column in the
June 1995 Delphi Informant], this is done using the Fields Editor.

The following example demonstrates both types of field-
level validation. It makes use of the \DBDEMOS files
installed with Delphi. If you want to follow along with this
demonstration but do not have the files on your computer,
you should reinstall Delphi using a Custom installation to
install only the sample files.

Begin by creating a new project. On the form, place the
following components: a DataSource, Table, DBGrid, and
DBNavigator. The form you create may resemble the one
in Figure 3.
Select the DataSource component and set its DataSet prop-
erty to Table1. Select the Table component and set its
DatabaseName property to DBDEMOS (the alias defined by
Delphi when you install the sample files). Set the TableName
property to VENDORS.DB, and the Active property to True.

Now select the DBGrid and set its DataSource property to
DataSource1. The contents of the Vendors table should appear
in the DBGrid. Finally, select the DBNavigator and also set
its DataSource property to DataSource1.

It is now time to instantiate the fields of the Table compo-
nent. Double-click the Table component to display the
Fields Editor. (Alternatively, you can select the Table compo-
Delphi INFORMANT ▲ 32

DBNavigator
nent, right-click it, and select Fields editor from the pop-up
menu.) Select the Add button from the Fields Editor dialog
box. When the Add Fields dialog box is displayed, all fields
should be highlighted. Select OK to instantiate a field object
for each of the fields in the Vendor table.
Validating Fields Using Properties
The primary properties that you use to control field-level vali-
dation are EditMask and Required. You can use the EditMask
property to provide an input template when the field requires
data in a particular format. This usually applies only to fields
that hold highly structured data such as dates, times, zip
codes, phone numbers, and other similar data. On the other
hand, the Required property can be used by any field that
accepts user input.

To demonstrate the use of both the EditMask and Required
properties, use the Object Inspector to select the object named
Table1Phone. Set the EditMask property to the following value:

!000-000-0000;1;_

In this example you entered the EditMask property directly.
Instead, you could have opened the property editor for the
EditMask property by clicking the ellipsis that appears when
the EditMask property is selected. The EditMask property edi-
tor is the Input Mask Editor dialog box shown in Figure 4.

Using this property editor you can select from a set of pre-
defined edit masks. By clicking the Masks button on this dia-
log box you can load a country-specific mask file (.DEM) for
international applications.

Whether you create a mask, or use one from the Input Mask
Editor, the EditMask has three parts, each separated by semi-
colons. In the first part of this edit mask, the exclamation
point, specifies that leading blanks will not be saved. The 0
character specifies that a number is required in that position,
while the dash character (-) specifies that a dash will appear
in those exact positions in the field.

The second part of this EditMask can contain only the number
0 or 1. If the number 0 appears there, literal characters within
the mask appear in the field, but are not saved to the underly-
SEPTEMBER 1995

Figure 4: The Input Mask Editor dialog box.
ing table. When a 1 appears in this position (as it does in the
example mask) the literal characters are saved to the table.

The final position includes a single character. This character is
used in the mask to refer to blank spaces. The underscore
character (_) is identified as the blank character in the mask
used in this example. (Note that the third part of the mask is
required even though this particular mask does not contain
blank characters.)

Select the Table1VendorName object from the Object
Inspector. Set the Required property to True. When the
Required property is set to True, the field cannot be left blank.
If you do leave the field blank and then attempt to post the
record, Delphi will generate an exception.

Beware that using the Required property for an instantiated
field does not alone ensure that valid data will be entered.
Let’s say a field includes an EditMask component that con-
tains literal characters (such as the dash characters in the
mask we’re using in this example). If the user changes that
field, but then erases the entered characters, Delphi does
not consider the field to be blank since the literal characters
appear there. Consequently, although a valid value has not
been entered, and the field looks as if no value was entered,
the Required property will not produce an exception.

You’re done. Compile the form and run it. Press I to
insert a new record. Enter the value 1 in the VendorNo field.
Next, press b to attempt to leave the record. An exception
is generated by the Required property as shown in Figure 5.
(Note: If you run this from the integrated development envi-
ronment — the IDE — and Break On Exception is checked
on the Preferences page of the Environment Options dialog
box, press 9 to continue running after the exception.)
Figure 5: When you leave the VendorName field
blank and then attempt to move to or insert another
record, this exception is raised. This occurs because
this field’s Required property is set to True.
Following
the excep-
tion, enter a
name in the
VendorNo
field. Now
press F
until you
arrive at the
Phone field.
Notice that
a mask
appears in
this field.
Enter the 10
characters of

a phone number, beginning with an area code. Now press b
to leave the field. Since both the Required property on
Table1VendorName field and the EditMask property in the
Table1Phone field are satisfied, the new record is posted. Close
the form to return to Delphi.
Delphi INFORMANT ▲ 33

an exception (silent or otherwise) if your code determines
that the record is invalid.

DBNavigator

Figure 6:
An excep-
tion raised
by an
OnValidate
event han-
dler.
Validating Fields from Event Handlers
Validating fields using event handlers is more direct when you
are using data-aware components instead of an Edit component.
(An Edit component is a text box that is not associated with a
field in a table.) An Edit component provides only a few events
that are appropriate for attaching validation code, with the
OnExit event being the best (although less than ideal) solution.

When it comes to field validation, data-aware field objects are
easier to use. This is because instantiated fields possess an
event handler that best represents the data validation needs of
developers. This event handler is OnValidate.

The OnValidate event triggers whenever Delphi attempts to
accept a value entered by the user. You can attach code to this
event, and explicitly test the value that the user has entered
into the field. If your code determines that the value is
invalid, you can prevent the value from being accepted by
raising an exception.

In most cases, you will raise an exception to prevent a value
from being accepted in one of two ways. The first is to use
the raise keyword to create a new exception, and the second
is to create a silent exception using the Abort procedure. The
raise keyword is used in the following demonstration.

When you use raise within an OnValidate event handler, you
can create an exception that will display an error message and
prevent the field from being accepted. While there are a num-
ber of ways of doing this (including techniques requiring that
you define an exception object, as demonstrated in last
month’s “DBNavigator”), the easiest way is to use raise with
the Create method of the exception class. This can be accom-
plished with the following line of code:

raise Exception.Create('Your error message goes here')

Begin by selecting Table1VendorNo from the Object
Inspector. Go to the Events page of the Object Inspector and
select OnValidate. Enter the following code into the
OnValidate event handler:

if Table1VendorNo.Value < 1 then
raise Exception.Create('Positive Vendor number

required');

Run the program, insert a new record, and enter a value of
less than one (e.g. -1) in the VendorNo field. When you press
F to leave the field the exception is generated, displaying
the message shown in Figure 6. (Again, if you’re running this
code from the Delphi IDE, the above note regarding Break
On Exception applies.)

Record-level validation is applied before the entire record is
posted to a table. As mentioned earlier, an exception is raised
automatically if the record being posted violates one or more
requirements of the table to which the record is being posted.
You can also use custom code to evaluate the record, and raise
SEPTEMBER 1995
Like the preceding demonstration of field-level validation,
record-level validation involves using event handlers. For our
example, we’ll use the BeforePost event handler, which
belongs to all descendants of the TDataSet class (this
includes Table, Query, and StoredProc components). The
code you add to the BeforePost event handler is used to evalu-
ate the fields (or other related controls) on the form. If your
code determines that the record is not valid, generating an
exception prevents the record from being posted.

The following example demonstrates this technique. In this
case, however, the use of a silent exception is demonstrated.
Begin by selecting the Table component. Then, from the
Events page, open the BeforePost event handler and add the
following code:

if Table1Address1.Value = '' and
Table1Address2.Value <> '' then

begin
MessageDlg('Address1 cannot be blank',

mtError,[mbOK],0);
Abort;

end;

Compile the program and run it. Insert a new record,
entering a positive vendor number and a vendor name.
Then press F to move to the field Address2 and enter an
address. Next, attempt to leave the record by pressing b
or I. This will trigger the BeforePost event handler.
Your code will detect that Address1 is blank and that
Address2 is not, and will display the error dialog box
shown in Figure 7. After you accept this dialog box, the
Abort procedure generates a silent exception.

Like a raised exception, a silent exception prevents the
record from being posted. The main difference is that a
silent exception does not display a dialog box. In this exam-
ple, a custom dialog box was displayed using the MessageDlg
function. The primary advantage of raising a silent excep-
tion is that you can use any dialog box, and even associate a
custom dialog box with a help context from your applica-
tion’s help file. When you raise an exception, the standard
Delphi exception dialog box is displayed, and you have no
control over its appearance and help context.
Delphi INFORMANT ▲ 34

DBNavigator

Figure 7:
Code in the
BeforePost
event han-
dler displays
an error
message.

Figure 8:
This Confirm
dialog box
asks the user
to confirm a
request to
close a form.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, author of numerous books on data-
base software, and Contributing Editor of Delphi Informant. You can reach Jensen Data
Form-Level Validation
Form-level validation is performed on the entire form, not
just a single field or record. Most commonly, this type of
validation is employed when the user has finished entering
data into the form. Like field-level and record-level valida-
tion, form-level validation is performed using event han-
dlers. Specifically, this takes place in the form’s
OnCloseQuery event handler.

Before continuing, it’s important to note that closing a
form does not destroy it. It only makes the form invisible
to the user. (You destroy a form using either the Release or
Free methods.)

The objects on a closed form can still be accessed by other
forms in your application. Typically, the code you place in the
OnCloseQuery event handler ensures that this data is valid,
and therefore usable by forms that may read the data from
the closed form.

Unlike the OnValidate and BeforePost event handlers, you do
not raise an exception if your validation determines that the
form should not be closed. Instead, you assign the value False
to the Boolean formal parameter CanClose, which is passed by
reference to the OnCloseQuery event handler. The default value
for this parameter is True.

The following demonstrates a simple use of the
OnCloseQuery event handler. In this case, the only valida-
tion that occurs is when the user confirms his or her inten-
tion to close the form. Begin by selecting the form’s
SEPTEMBER 1995
OnCloseQuery event handler from the Object Inspector.
Enter the following code:

if MessageDlg('Close this form',mtConfirmation,
[mbYes,mbCancel],0) <> mrYes then

CanClose := False;

Compile the form and run it. Next, double-click the Control
menu to close the form. This will trigger the form’s
OnCloseQuery event handler, and the dialog box shown in
Figure 8 will be displayed. If you select Yes, the form will
close. Otherwise, the code in the event handler assigns the
value False to CanClose, and the form remains open.
Conclusion
Data validation is an important part of your Delphi applica-
tions. Whenever possible, you should use the validation
offered by your data tables, and the properties of your form’s
components to ensure that entered data is valid.

When this does not provide the level of validation that you
require, you can use the valuable event handlers that Delphi
provides to add this essential capability to your applications. ∆

The demonstration project referenced in this article is available
on the 1995 Delphi Informant Works CD located in
INFORM\95\SEP\CJ9509.
Delphi INFORMANT ▲ 35

Systems at (713) 359-3311, or through CompuServe at 76307,1533.

SEPTEMBER 1995

Strings: Part II
Stripping and Manipulating Object Pascal Strings

OP Basics
Delphi / Object Pascal

By Charles Calvert

uses
MathBox;

procedure TForm1.Button1Click(S
var

S: string;
R: Real;

begin
S := '2.03 ';
R := Str2Real(S);
WriteLn(R:2:2);

end;

function StripBlanks(S: string)
var

i: Integer;
begin

i := Length(S);
while S[i] = ' ' do begin

Delete(S,i,1);
Dec(i);

end;
StripBlanks := S;

end;

Figure 1 (Top): In this code example,
tion contains characters that need to b
The StripBlanks function.
L ast month we introduced Object Pascal strings, and began to discuss
the basics of string manipulation — searching for a substring within a
string, and parsing lengthy strings. As promised, in this month’s install-

ment, we’ll talk about stripping blanks from the end of a string, and functions
for manipulating strings.
Stripping Blanks
A classic problem is the need to strip blanks off the end of a string. Consider the code frag-
ment in Figure 1.

At first glance you might expect this code to print the number 2.03 to the screen. However, it
will not because Str2Real cannot handle the extra spaces appended after the characters 2.03.
ender: TObject);

: string;

 the first line in the begin sec-
e stripped. Figure 2 (Bottom):
It’s quite likely that a problem similar to this could occur in a
real-world program. For instance, a programmer might ask the
user to enter a string, and the user may accidentally append a
series of blanks to it (or perhaps the extra characters were
added by other means). To ensure that your program will run
correctly, you must strip those extra blank characters from the
end of the string.

The StripBlanks function (see Figure 2) can be used to remove
space characters from the end of a string. StripBlanks will not
change the string that you pass into it, but creates a second
string that it passes back to you as the function result. This
means you must use this function in the following manner:

S2 := StripBlanks(S1);

where S1 and S2 are both strings. You can also write code that
looks similar to this:

S1 := StripBlanks(S1);

StripBlanks has one local variable, i, which is an integer:

var
i: Integer;
Delphi INFORMANT ▲ 36

{--
Name: GetTodayName function

Declaration: GetTodayName(Pre, Ext: string): string;
Unit: StrBox
Code: S
Date: 03/01/94

Description: Return a filename of type PRE0101.EXT,
where PRE and EXT are user supplied strings,
and 0101 is today's date. PRE must not be
longer than 2 letters.

---}
function GetTodayName(Pre, Ext: string): string;
var

y, m, d, dow : Word;
begin

GetDate(y,m,d,dow);
Year := Int2StrPad0(y, 4);
Delete(Year, 1, 2);
GetTodayName := Pre + Int2StrPad0(m, 2) +

OP Basics
This variable is set to the length of the string passed to the
function:

i := Length(S);

The Length function is one of the more fast and simple rou-
tines in the Object Pascal language. In effect, it does nothing
more than this:

function Length(S: string): Integer;
begin

Length := Ord(S[0]);
end;

In short, it returns the value of the length byte that is the first
character of a string. [See last month’s article for a discussion
of the length byte.] The next line in the StripBlank function
checks the value of the last character in the string under
investigation:

while S[i] = ' ' do begin

More explicitly, it checks to see whether it is a blank. If it is a
blank, the following code is executed:

Delete(S,i,1);
Dec(i);

The built-in Delete function takes three parameters. The first is
a string, the second is an offset into the string, and the third is
the number of characters you want to delete from the first
parameter. In this case, if you passed in the string 'Sam ',
which is the name “Sam” followed by three spaces, the last
space would be lopped off so that the string would become
'Sam ', where “Sam” is followed by two spaces.

The function then decrements the value of i and returns to
the top of the loop to see if the next character is a space:

while S[i] = ' ' do begin

If the next character is a space, it is also deleted from the end
of the string. The entire process is repeated until the last char-
acter in the string is no longer a space. At that point, the
function ends and a string is returned that is guaranteed not
to have any spaces appended to the end of it.

Becoming familiar with functions such as StripBlanks is
essential for all serious programmers. It isn’t really that this
one particular function is so important (although I do use
this function fairly often). What is important is that
StripBlanks is the kind of function that solves a common
programming problem, and that it does so by manipulating a
chunk of data — byte by byte.
Int2StrPad0(d, 2) +
Year + '.' + Ext;

end;

Figure 3: The GetTodayName function.
Date-Based File Names
Now let’s turn our attention to another Delphi function that
manipulates strings. This function is not likely to be used daily
by most programmers, but when you do need it, it’s very handy.
SEPTEMBER 1995
Programmers often end up making reports or gathering
data on a daily basis. For instance, I sign onto an on-line
service nearly every day, and frequently need to store the
information I glean from cyberspace in a file containing
the current date.

In other words, if I sign onto CompuServe and download
the current messages from the Delphi forum, I don’t want
to store that information in a file called DELPHI.CIS. I
want a file name that includes the current date, so I can
easily tell what files were downloaded on a particular day.
In short, I want to automatically generate file names that
look like this: DE022595.TXT, PA022695.TXT,
DE022795.TXT, and so on, where 022795 is a date of the
type MMDDYY.

The GetTodayName function (see Figure 3) fits the bill.
This function takes two parameters: a two-letter prefix,
and a three-letter extension, and creates a file name of the
type we’ve just discussed. The function begins by calling
the built-in Pascal function GetDate, which returns the
current year, month, day, and day of week as Word values.
If the date were Tuesday, March 25, 1994, the function
would return the following:

Year := 1994
Month := 3
Day := 25
Day-of-Week := 2 { 0 = Sunday }

Assuming that the user of this function passed in DE in the
PRE parameter, and TXT in the EXT parameter, it would be
fairly easy to use the IntToStr function to create something
like this:

DE3251994.TXT
Delphi INFORMANT ▲ 37

OP Basics
There are several problems with this result, the biggest being
that it is 12 characters long — too long for a legal DOS file
name. To resolve the problems, we need to change the
month to a number such as 03, to keep the day as 25, and
to strip the 19 from the year:

DE032594.TXT

To achieve this end, GetTodayName needs a special function
that will not only convert a number to a string, but also pad
it with an appropriate quantity of zeros. The Int2StrPad func-
tion is what we need (see Figure 4).
{--
Name: Int2StrPad0 function

Declaration: Int2StrPad0(N: LongInt; Len: Integer): string;
Unit: MathBox
Code: N
Date: 03/01/94

Description: Converts a number into a string and pads
the string with zeros if it is less than
Len characters long.

---}
function Int2StrPad0(N: LongInt; Len: Integer): string;
var

S : string;
begin

Str(N:0,S);
while Length(S) < Len do

S := '0' + S;
Int2StrPad0 := S;

end;

Figure 4: The Int2StrPad function.
This very useful function first uses the built-in Pascal routine
called Str to convert a LongInt into a string. If the string that
results is longer than Len bytes in length, the function sim-
ply exits and returns the string. However, if the string is less
than Len bytes, the function appends zeros in front of it
until it is Len characters long. Here is the transformation
caused by each successive iteration of the while loop if N
equals 2 and Len equals 4:

2 { First iteration }
02 { Second iteration }
002 { Third iteration }
0002 { Fourth iteration }

The function checks to see if the string is four characters
long. If it isn’t, the function adds a zero to the beginning
of the string:

S := '0' + S;

In the case of the GetTodayName function, the value passed in
the Len parameter is 2, because we want to translate a num-
ber such as 3 or 7 into a number such as 03 or 07.

The final trick in the GetTodayName function is to convert
a year such as 1994 into a two-digit number such as 94.
Clearly, this can be easily achieved by merely subtracting
SEPTEMBER 1995
1900 from the date. However, that sound of hoofbeats in
the distance is the rapid approach of the year 2000.

Subtracting 1900 from 2001 would not achieve the desired
result. The code therefore first converts the year into a
string, then simply lops off the first two characters with the
Delete function:

Year := Int2StrPad0(y,4);
Delete(Year,1,2);

In this case, a 4 is passed to Int2StrPad0, because the year was
originally a four-digit number.

As mentioned earlier, the Delete function is built into the
Delphi language. It deletes characters from a string, starting
at the offset specified in the second parameter. The number
of characters to be deleted is specified in the third parame-
ter. (You can search on “Delete” in Delphi’s on-line help for
more details.)

If you step back now and view the GetTodayName function as
a whole, you can see that it allows you to pass in the first two
letters and the extension for a file name. In return, it supplies
you with a string containing the prefix and extension, plus
the current date. It’s great to have functions like this available
to you when you need them.
Using the Move and FillChar Functions
The next two built-in Delphi methods we’ll examine are fast
and powerful. Speed of this sort is a luxury, but it comes replete
with some dangers that you must be sure to sidestep. In particu-
lar, neither the FillChar nor the Move function has much in the
way of built-in error checking. FillChar is usually used to initial-
ize an array, record, or string. It will, however, fill a structure not
only with zeros but with whatever character you specify.

FillChar takes three parameters. The first is the variable you
want to copy bytes into, the second is the number of bytes
you want to fill, and the third is the character you want
placed in those bytes:

procedure FillChar(var X; Count: Word; value);

Consider the following array:

var
MyArray: array[0..10] of Char;

Given this array, the following command will set all the
members of this array to #0:

FillChar(MyArray,SizeOf(MyArray),#0);

If you want to fill the array with spaces, you could use the
following statement:

FillChar(MyArray,SizeOf(MyArray),#32);
Delphi INFORMANT ▲ 38

OP Basics
This code would fill the array with the letter “A”:

FillChar(MyArray,SizeOf(MyArray),'A');

The key point to remember when you’re using FillChar is
that the SizeOf function can help you ensure that you are
writing the correct number of bytes to the array. The big
mistake you can make is writing too many bytes to the
array — this is much worse than writing too few. If you
think of the memory theater example we covered in last
month’s article, you can imagine ten members of the audi-
ence sitting together, all considering themselves part of
MyArray. Right next to them are two people who make up
an integer. They are busy remembering the number 25.
Now you issue the following command:

FillChar(MyArray, 12, #0);

All the people who are part of MyArray will start remem-
bering #0, which is fine. However, the command will keep
right on going past the members of MyArray and tell the
two folks remembering the number 25 that they should
both now remember #0. In other words, the Integer value
will also be “zeroed out” as well, and a bug has been intro-
duced into your program. You should understand that the
result described here is a best-case scenario. The worst case
scenario is that the extra two bytes belong to another pro-
gram. This means that your program will generate a
General Protection Fault (or GPF). The moral is that you
should always use the FillChar procedure with care.
Copy or Move It
A function similar to FillChar is called Move. Its purpose is to
move a block of data from one place to another. A typical use
of this function might be to move one portion of a string to a
second string, or to move part of an array into a string. The
Copy function can also be used for similar purposes. The
advantage of the Copy function is that it is relatively safe. The
disadvantages are that it is less flexible, and can be slower
under some circumstances.

Move takes three parameters. The first is the variable you want
to copy data from, the second is the variable you want to move
data to, and the third is the number of bytes you want to move:

procedure Move(var Source, Dest; Count: Word);

The following code is an example of a typical way to use
Move. If you enjoy puzzles, you might want to take a moment
to see if you can figure out what it does:

procedure TForm1.Button1Click(Sender: TObject);
var

S1,S2: string;
begin

S1 := 'Heebee Gee Bees';
Move(S1[12], S2[1], 4);
S2[0] := #4;
Edit1.Text := S2;

end;
SEPTEMBER 1995
This code first sets S1 to a string value. It then indexes 12
bytes into that string and moves the next four bytes into a
second string. Don’t forget to count the spaces when you
are adding the characters in a string. (And don’t forget
that the first byte is the length byte.) Finally, it sets the
length byte of the second string to #4, which is the num-
ber of bytes that were moved into it. After executing this
code, the final statement assigns the word “Bees” to
Edit1.Text. This statement accomplishes the same task using
the Copy function:

S1 := 'Heebee Gee Bees';
S2 := Copy(S1, 12, 4);
WriteLn(S2);

The first parameter to Copy is the string you want to get data
from, the second is an offset into that string, and the third is
the number of bytes you want to use. The function returns a
substring taken from the string in the first parameter.

The Copy function is easier to use and safer than the Move
function, but it is not as powerful. If at all possible, you
should use the Copy function. However, there are times
when you can’t use the Copy function, particularly if you
need to move data in or out of at least one variable that is
not a string. Also, it is worth remembering that Move is
very fast. If you have to perform an action repeatedly in a
loop, you should consider using Move instead of Copy.

As easy as it is to write data to the wrong place using the
FillChar statement, you will find that the Move statement can
lead you even further astray in considerably less time. It will,
however, rescue you from difficult situations, provided you
know how to use it.
Moving On
The following function puts the Move procedure to practical
use. As its name implies, the StripFirstWord function (see
Figure 5) is used to remove the first word from a string. For
instance, it would change the following string: 'One Two
Three', into 'Two Three'.

The first line in this function introduces you to the built-in
Pos (position) function, which locates a substring in a longer
string. In this case for instance, the Pos function is used to
find the first instance of the space character in the string
passed to the StripFirstWord function. The function returns
the offset of the character it is looking for.

More specifically, the Pos function takes two parameters. The
first is the string to search for, and the second is the string
you want to search. Therefore the statement Pos(#32,S)
looks for the space character inside a string called S.

If you passed in this line of poetry — “The pure products of
America go crazy” — the Pos function would return the num-
ber 4, which is the offset of the first space character in the sen-
tence. However, if you passed in a simpler string such as
Delphi INFORMANT ▲ 39

{--
Name: StripFirstWord function

Declaration: StripFirstWord(S : string) : string;
Unit: StrBox
Code: S
Date: 03/02/94

Description: Strip the first word from a sentence,
return the shortened sentence. Return original
string if there is no first word.

---}
function StripFirstWord(S : string) : string;
var

i, Size: Integer;
S1: string;

begin
i := Pos(#32, S);
if i = 0 then begin

StripFirstWord := S;
Exit;

end;

Size := (Length(S) - i);
Move(S[i + 1], S[1], Size);
S[0] := Chr(Size);
StripFirstWord := S;

end;

Figure 5: The StripFirstWord function.

OP Basics

Charlie Calvert works at Borland International as a manager in Developer Relations.
He is the author of Delphi Programming Unleashed, Teach Yourself Windows
Programming in 21 Days, and Turbo Pascal Programming 101. He lives with his
“Williams”, Pos would return 0 because there is no space char-
acter in the string. If the function does not find a space charac-
ter in the string, it returns an empty string:

if i = 0 then begin
StripFirstWord := '';
Exit;

end;

The built-in Exit procedure simply exits the function without
executing another line of code. This is the StripFirstWord
function’s sole, and rather limited, exercise in error checking.

If the offset of a space character is returned by the Pos function,
the Move function transfers an “offset” number of characters
from the string that is passed in to a local string named S1:

i := Pos(#32, S);
...

Move(S[1], S1[1], i);
S1[0] := Chr(i-1);

The second line of code sets the length byte for the newly created
string that contains the first word in the sentence. The next three
lines of code excise the first word from the original sentence:

Size := (Length(S) - i);
Move(S[i + 1], S[1], Size);
S[0] := Chr(Size);
SEPTEMBER 1995
The first step is to determine the number of characters in
the sentence after the first word is removed. This is found
by subtracting the number returned by Pos from the total
length of the sentence. StripFirstWord then moves the
remaining portion of the string from a position “offset”
characters deep in the following string:

She was a child and I was a child, In a kingdom by the sea

to the very first spot in the string:

was a child and I was a child, In a kingdom by the sea sea

The extra characters — represented in this case by the second
occurrence of “sea” — are then lopped off by setting the
length byte to the appropriate number of characters:

was a child and I was a child, In a kingdom by the sea

The function then returns the first word of the sentence, and
also the shortened sentence.

The StripFirstWord function is not perfect. For instance, some
readers may have noticed that the function would not per-
form as advertised if the first characters of the string passed to
it were spaces. Overall, however, it does the job required of it.

Of course, you could write a function that strips spaces
from the beginning of a string. Then you could first pass a
string to the new function you created, and then pass it on
to the StripFirstWord function. (We’ll do this in the next
article of this series.)
Conclusion
Next month, we’ll talk more about the StripFirstWord func-
tion, and explore parsing the contents of a text file and con-
verting the data into fundamental Delphi types.

This article was adapted from material for Charles Calvert’s
book, Delphi Programming Unleashed, published in 1995 by
SAMS publishing. ∆

Delphi projects that demonstrate the principles discussed in this
article are available on the 1995 Delphi Informant Works CD
located in INFORM\95\SEP\CC9509.
Delphi INFORMANT ▲ 40

wife, Marjorie Calvert, in Santa Cruz, CA.

SEPTEMBER 1995

A Stopwatch Component
Embedding Assembly Language in Object Pascal
to Call the Windows Virtual Timer Device

On the Cover
Delphi / Object Pascal

By Richard D. Holmes
T he hallmark of Delphi is flexibility combined with performance. One
example of this flexibility is Delphi’s ability to combine a very high-level
language, Object Pascal, with embedded assembly language and even

in-line machine code. Using these features, I have built two high-speed soft-
ware stopwatches.

Class TStopWatch is a simple stopwatch designed for timing external events. It can measure inter-
vals as short as 25 microseconds (on a 486/66). Class TProfilingStopWatch is a specialized descen-
dant of TStopWatch that is designed for profiling programs. By compensating for overhead,
TProfilingStopWatch can measure intervals as short as 2-3 microseconds. In comparison, the short-
est interval that can be measured with the DOS/Windows system clock is 55,000 microseconds.

Classes TStopWatch and TProfilingStopWatch are non-visual components that can be installed on
the Delphi Component Palette. Using them is as simple as placing a stopwatch object on the form
and then calling the methods: Start, Stop, and ElapsedTime. Two example programs are presented:
one that times external events and one that profiles code performance.
Unit VTIMERDV
The Windows Virtual Timer Device (VTD) provides access to the PC’s hardware timer within the
confines of Windows’ protected memory management system. The 8253 Programmable Interval
Timer chip ticks at a rate of 1.196 MHz, giving the VTD a resolution of 0.836 microseconds.
Calling a Windows’ virtual device driver, however, requires assembly language routines. The rou-
tines used here are based on those of Rick Grehan in his article “The Software Stopwatch” (Byte,
April 1995). Additional information can be found in “Timers and Timing in Microsoft Windows”
on the Microsoft Developer’s Network CD-ROM.

The Delphi unit VTIMERDV (see Listing Two on page 45) encapsulates the assembly language
routines that are needed to call the VTD and to process the results. The public interface to unit
VTIMERDV exports just one function, VTD_GetTime, which returns a 64-bit real number that
represents the time in seconds since Windows was started. The implementation of the unit uses the
private procedure VTD_GetEntryPoint. Noteworthy features in the implementation of
VTIMERDV include the use of embedded assembly language, the use of embedded machine code,
and the presence of an initialization section.
Delphi INFORMANT ▲ 41

On the Cover
The procedure VTD_GetEntryPoint calls the Window software
interrupt $2F to get the VTD’s entry point. This address is stored
in the variables wVTDSegment and wVTDOffset. (I’ve used a mod-
ified “Hungarian” convention for naming variables and constants.
The first letter or letters of a variable’s name represent its data
type: w for Word, l for Longint, d for Double, btn for TButton,
etc.) In the listing for this procedure, notice how the ability to ref-
erence Object Pascal variables within an asm block makes it easy
to integrate assembly language routines into a Delphi program.

The function VTD_GetTime calls the VTD to get the number of
hardware timer ticks that have elapsed since Windows was start-
ed and converts the returned value from ticks to seconds. The
implementation of this routine requires a combination of
embedded assembly language and in-line machine code. This is
amazingly simple to do in Delphi, since the Object Pascal state-
ments within the body of a procedure or function can be freely
intermixed with asm statements and inline statements.

As shown in Listing Two, the implementation of VTD_GetTime
consists of an asm block, followed by an inline block, followed
by another asm block. The final result is a high-performance
function that goes well beyond the native capabilities of Delphi,
yet is implemented entirely within the Delphi environment.

The first asm block calls the VTD, which returns the lower 32
bits of the tick count in the EAX register and the upper 32 bits
in the EDX register. This poses a real challenge. How can we
access these 32-bit registers? Delphi’s built-in assembler is a 16-
bit assembler. It can manipulate the 16-bit registers AX and DX,
but not their 32-bit counterparts EAX and EDX. The solution is
to use in-line machine code. By using the $66 opcode prefix to
toggle the operand size, we can access the 32-bit registers even
though the executable itself is just a 16-bit program. Cool!

By transferring the EAX and EDX registers to adjacent memory
locations, we can also emulate a 64-bit integer variable, even though
the largest integer type that Delphi supports is the 32-bit Longint.
The last instruction within the inline block pushes this 64-bit inte-
ger variable onto the coprocessor’s floating point stack, where it is
implicitly converted to an 80-bit real. The second asm block multi-
plies the tick count by the conversion factor dSecondsPerTick, stores
the calculated time as a 64-bit real in the Object Pascal return vari-
able @Result, and pops the coprocessor stack to clean up.

Important note: All of this works only on an 80386 or higher
CPU with a hardware coprocessor or floating point unit.

Initialization sections are another innovation in the Delphi
programming model. The initialization section of a unit con-
tains code that is executed when the program is loaded, prior
to the execution of any routines in the body of the unit. In
unit VTIMERDV, the procedure VTD_GetEntryPoint must
be called before the function VTD_GetTime can be used.
However, VTD_GetEntryPoint only needs to be called once. It
is therefore an ideal candidate to be placed in the unit’s ini-
tialization section. The other action needed within the ini-
SEPTEMBER 1995
tialization section is to set the value of the conversion factor,
dSecondsPerTick.

A minor shortcoming of Delphi’s asm and inline statements is
that you cannot reference Object Pascal constants symbolically,
although you can reference variables by name. It was therefore
necessary to declare the conversion factor, dSecondsPerTick, as var
rather than const and to initialize its value.
Class TStopWatch
The class TStopWatch is a Delphi component that represents an
electronic stopwatch. TStopWatch uses unit VTIMERDV in its
implementation, but itself contains no traces of the low-level
details that were the center of attention in VTIMERDV (see
Listing Three on page 46). These details have been successfully
encapsulated within VTIMERDV.

The methods that control a TStopWatch object are the familiar
ones used to operate a stopwatch:
• Start starts the watch. If the watch is already running, Start

does nothing. Note that starting the watch does not reset the
accumulated time. This allows multiple sequences of Start
and Stop to be used to measure the cumulative time for a
family of related events without requiring the programmer to
create variables and write code to perform the accumulation.

• Stop stops the watch and adds the time that has elapsed since
Start to the accumulator. If the watch is already stopped, Stop
does nothing.

• Reset stops the watch and resets the accumulated time to
zero. It is not necessary to call Reset before using a
TStopWatch object, since the constructor initializes all fields
to their reset values.

• ElapsedTime reads the watch and returns the elapsed time
in seconds. If the watch is stopped, it returns the accumu-
lated time. If the watch is running, it returns the current
“split time”.

• IsRunning returns a Boolean value that indicates whether the
watch is running.
Example 1
Class TStopWatch is a non-visual component. It should be
installed using the standard procedures for customizing the
Delphi component library (see Chapter 2 of the User’s Guide).
By default it installs itself on the System page of the
Component Palette (see Figure 1). To create a TStopWatch
object, simply drag a stopwatch from the palette and place it
on the form. Then add the code to operate the stopwatch at
the appropriate points in your application. Like other non-
visual components, the TStopWatch object will be visible at
design time, but not at run-time.

Example 1 (see Listing Four on page 48) uses two stopwatches
that are controlled by buttons on the form, as shown in Figure 2.
It shows how TStopWatch can be used to time external events. In
this case the external events are just button presses, but the possi-
bilities for timing external events are limited only by your ability
to make those external stimuli visible to your program.
Delphi INFORMANT ▲ 42

On the Cover

Figure 1 (Top): The
TStopWatch and
TProfilingStopWatch compo-
nents installed on the
Component Palette. Figure
2 (Bottom): The user inter-
face for Example 1.
This example also shows that an application can use two or more
stopwatches. Each stopwatch can be started and stopped inde-
pendently and there are no restrictions on how many stopwatch-
es can be running concurrently. This is because only one timer is
running on the 8253 Timer Chip. These components are simply
retrieving and storing numbers from this timer and then per-
forming arithmetic on those values. This is not like using the
TTimer component in Windows that consumes a software timer
from a limited pool of timers that Windows manages.
Figure 3: The difference between timing external events (x) and profil-
ing code (y).
Class TProfilingStopWatch
Class TProfilingStopWatch is a specialized descendant of
TStopWatch that is designed for profiling the execution of Delphi
programs. It automatically removes the overhead of calling the
Windows VTD from the elapsed time. Figure 3 shows why this
overhead should be removed from a stopwatch that times blocks
off code, but not from a stopwatch that times external events.

The overhead in calling the Windows VTD can be divided into
two parts: preparing to read the hardware timer and returning
afterwards. In Figure 3, these are shown as intervals a and b,
respectively. A program that triggers the stopwatch at time t1
will actually read the hardware timer at time u1 and will not
regain control of the processor until time v1.

For a stopwatch that is used to measure the interval between two
external events, t1 and t2, no correction is needed for overhead.
The measured interval x = u2 - u1 is equal to t2 - t1, since the
lag time a is identical for both events. The shortest interval, x,
that can be measured between two external events is therefore b
+ a. On a 486/66 PC, this is about 22 microseconds.

On the other hand, for a stopwatch that profiles code, the desired
result is the interval between v1 and t2 , which represents the
amount of processor time actually used by the code. Processor
time used by the stopwatch should be excluded. The essence of
class TProfilingStopWatch is to separately measure the overhead, z
= b + a, and use it to calculate the interval, y = u2 - u1 - z, which
is of equal duration to t2 - v1. In principle, the shortest interval
that can be measured with a profiling stopwatch is one tick of the
hardware timer (0.840 microseconds). In practice, the limiting
SEPTEMBER 1995
factor is the uncertainty in cal-
ibrating the overhead, which
appears to be on the order of
2-3 microseconds.
By comparison, the DOS system clock, which ticks only 18
times per second, has a resolution of 55 milliseconds (55,000
microseconds). Although the Windows API function
GetTickCount returns the number of milliseconds since
Windows was started, the value is only updated every 55 mil-
liseconds. Therefore, its actual resolution is identical to that
of the DOS clock. The resolution of TStopWatch is therefore
over 2,000 times better than the system clock used by DOS
and Windows, and the resolution of TProfilingStopWatch is
nearly 20,000 times better.

To reiterate, these components should be applied as follows: Use
TStopWatch to measure the interval between external events, but
use TProfilingStopWatch to measure the processor time consumed
by a block of code.

In addition to automatic calibration and removal of overhead, class
TProfilingStopWatch also provides five methods that can be used to
manually control the calibration for overhead. These calibration
methods will be of interest primarily to users attempting to mea-
sure intervals that are short compared to the observed overhead:
• CalibrateOverhead measures the overhead of making 100 calls to

Start and Stop, and stores the average value in the class variable
dOverheadForStop. It also measures the overhead of making 100
calls to ElapsedTime to read a split time and stores the average
value in the class variable dOverheadForSplit. CalibrateOverhead
is called in the initialization section for unit StpWatch. It can
also be called later to recalibrate the overhead.

• OverheadForStop returns the current value of
dOverheadForStop.

• OverheadForSplit returns the current value of
dOverheadForSplit.
Delphi INFORMANT ▲ 43

D
o
d
m
1

T
s
p
b
L
r
a
t

I
T

On the Cover
• SetOverheadForStop allows the value of dOverheadForStop to
be set directly.

• SetOverheadForSplit allows the value of dOverheadForSplit to
be set directly.

Note that these calibration methods are class methods and
that the variables dOverheadForStop and dOverheadForSplit are
class variables, not instance variables. At any point in time, all
TProfilingStopWatch objects within a program use the same
values of dOverheadForStop and dOverheadForSplit. This
ensures that differences in the measured overhead will not
bias one stopwatch relative to another. The overhead correc-
tions will be consistent for all instances and the measured
times can be freely compared against one another. Of course,
Object Pascal doesn’t directly support Smalltalk-style “class
variables”, but with the additional encapsulation provided by
units, it’s easy to fake it.
w

K
n
s
t
a

T

Example 2
Example 2 (see Listing Five on page 49) uses four profiling stop-
watches to time the execution of three blocks of code, and to
compare their execution time against the total time for the
enclosing procedure. It illustrates the use of repeated calls to
Start and Stop to accumulate the total time for a family of related
events, the use of ElapsedTime to obtain split times, and the use
of the TProfilingStopWatch calibration methods.
C
d
p
t
e
d
i

B
c
H
o
e
i

T
t
t
O
e

Figure 4: The user interface for
Example 2.
Figure 4 shows the user
interface for this program.
The Run button executes
the test procedure,
btnRunClick, that is being
profiled. The three blocks
to be timed within this
procedure are the “Empty
Loop”, the “Split Loop”,
and the “Work Loop”.
The total time is mea-
sured by
ProfilingStopWatch1, the
Empty Loop is timed by
ProfilingStopWatch2, the
Split Loop is timed by
ProfilingStopWatch3, and
the Work Loop is timed
by ProfilingStopWatch4.
T
i
c
t

The number of iterations for all three loops is controlled by the
value entered in the Iterations edit box. The Work Loop, howev-
er, contains a nested inner loop, so that the amount of work that
it performs is proportional to the Iterations parameter squared.

The Empty Loop does nothing but start ProfilingStopWatch2 and
then immediately stop it. Since the stopwatch is not reset
between iterations, the reported time is cumulative. If the calibra-
tion for the overhead of stopping the watch was perfect, the mea-
sured time would be zero, regardless of the number of iterations.
SEPTEMBER 1995
ividing the accumulated time for the Empty Loop by the number
f iterations gives an estimate of the accuracy in the calibration of
OverheadForStop. In Figure 3, for example, the actual time was 28
icroseconds for 20 iterations. The calibration error was therefore

.4 microseconds per Stop.

he Split Loop does nothing but call ElapsedTime to read the
plit time. If the calibration for the overhead of taking a split was
erfect, the measured time would be zero, regardless of the num-
er of iterations. Dividing the accumulated time for the Split
oop by the number of iterations gives an estimate of the accu-
acy in the calibration of dOverheadForSplit. In Figure 3, the
ctual time was 22 microseconds for 20 iterations. The calibra-
ion error was therefore 1.1 microseconds per Split.

n practice, the limiting factor in the resolution of
ProfilingStopWatch is the uncertainty in calibrating the overhead,
hich can fluctuate by 10 percent or more.

eep in mind, however, that calibration uncertainties are sig-
ificant only if you are trying to measure intervals that are
hort compared to the measured overhead. For example, the
ime required to execute some Windows API functions can be
s much as a thousand times greater than this.

he Recalibrate button executes the class method procedure
alibrateOverhead and displays the new values of
OverheadForStop and dOverheadForSplit. After recalibrating,
ress the Run button again to see the effect on the measured
ime for the Empty Loop and the Split Loop. You can also
xplore the effect of changes in dOverheadForStop and
OverheadForSplit by entering new values in the correspond-
ng edit boxes and then pressing the Set Overhead button.

y default, each TProfilingStopWatch object automatically
orrects for the overhead of calling the Windows VTD.
owever, it can do this only for the overhead incurred by its

wn calls to the VTD. If nested timers are used, as here, the
lapsed time for the outer timer will include the overhead
ncurred by the inner timers.

he solution is to count the number of calls made by the inner
imers and to subtract this from the elapsed time for the outer
imer, after multiplying by the values returned by
verheadForStop and OverheadForSplit. This is the time report-

d for StpW Calls.

he value reported for Remainder consists of all the remain-
ng parts of procedure btnRunClick. This is mostly just the
ontrol code for the Empty Loop, and its proportion of the
otal time is small, as expected.
Conclusion
Unit VTIMERDV shows the flexibility of Delphi in allowing
the programmer to use assembly language or even machine
code to perform operations that cannot be implemented
directly in Object Pascal. Yet, at the same time, everything was
Delphi INFORMANT ▲ 44

On the Cover
done within the Delphi environment and within the structural
framework of Object Pascal with its excellent support for
strong type checking and safe, structured programming.

Class TStopWatch builds upon the foundation provided by
VTIMERDV to create an easy-to-use Delphi component that
provides a high-speed timer with the ability to resolve exter-
nal events that are separated by intervals as short as 25
microseconds. Class TProfilingStopWatch is a specialized
descendant of TStopWatch that can profile code blocks as
short as 2-3 microseconds. ∆

The stopwatch components and demonstration forms referenced in
this article are available on the 1995 Delphi Informant Works
CD located in INFORM\95\SEP\RH9509.
Richard Holmes is a senior programmer/analyst at NEC Electronics in Roseville, CA,
where he designs and develops client/server database applications. He can be reached
on CompuServe at 72037,3236.
Begin Listing Two: The VTimerDV unit
{ Access the Windows Virtual Timer Device }
unit VTimerDv;

interface

function VTD_GetTime: Double;

implementation

var
wVTDSegment: word;
wVTDOffset: word;
{ Used as a 64-bit signed Integer }
aVTDTicks: array [1..2] of LongInt;
{ Actually a constant }
dSecondsPerTick: Double;

procedure VTD_GetEntryPoint;
begin

{ Call Windows to get address of VTD entry point. }
asm

{ Code to return API entry point }
mov ax,$1684
{ Code for Virtual Timer Device (VTD) }
mov bx,$05
{ Clear ES:DI }
xor di,di
mov es,di
{ Call Windows }
int $2F
{ Save results }
mov wVTDSegment,es
mov wVTDOffset,di

end;
end;
SEPTEMBER 1995
function VTD_GetTime: Double;
begin;

{ Call VTD to get current "micro-ticks". }
asm

{ Load the entry point }
mov dx,wVTDSegment
mov ax,wVTDOffset
{ Push our call-back address }
push cs
mov bx, offset @RetSpot
push bx
{ Push the entry point }
push dx
push ax
{ Load ID for function VTD_Get_Real_Time }
mov ax,$100

{ Call the VTD }
retf

@RetSpot:
{ Just a place to come home to }
nop

end;

{ The 64-bit tick count is returned in the 32-bit
registers EAX and EDX. Since Delphi's built-in
assembler does not support 32-bit registers, use
machine code to transfer the registers into two
adjacent 32-bit LongInts, which emulate a 64-bit
Integer. Then push the 64-bit Integer onto the
coprocessor stack. }

inline
(
{ Toggle operand size }
$66/
{ mov aVTDTicks[1],eax }
$89/$06/>aVTDTicks/
{ Toggle operand size }
$66/
{ mov aVTDTicks[2],edx }
$89/$16/>aVTDTicks+4/
{ fild[64] aVTDTicks }
$DF/$2E/>aVTDTicks
);

{ Convert from ticks to seconds. }
asm

{ Multiply by the conversion factor }
fmul dSecondsPerTick
{ Store in @result and pop the stack }
fstp @result

end;
end;

initialization
VTD_GetEntryPoint;

{ The built-in assembler cannot reference Object
Pascal constants. So must declare this as a
variable and explicitly initialize it. }

{ Timer rate is 1.196 MHz }
dSecondsPerTick := 0.836E-6;

end.

End Listing Two
Delphi INFORMANT ▲ 45

On the Cover
Begin Listing Three: The StpWatch Unit
{ Exports classes TStopWatch and TProfilingStopWatch. }
unit StpWatch;

interface

uses Classes, VTimerDv;

type
TStopWatch = class(TComponent)
{ A simple stopwatch, appropriate for timing external

events. }
private

TimerIsRunning: Boolean;
dStartTime: Double;
dCurrTime: Double;
dAccumTime: Double;

public
{ Uses default constructor. All data fields are

initialized to zero. }
function IsRunning: Boolean; virtual;
procedure Start; virtual;
procedure Stop; virtual;
procedure Reset; virtual;
function ElapsedTime: Double; virtual;

end;

TProfilingStopWatch = class(TStopWatch)
{ A specialized stopwatch for profiling Delphi

programs. Automatically corrects for the overhead
of calling the Windows VTD. Calibration is done
via class methods and class variables, thereby
ensuring that overhead corrections are identical
for all instances. }

private
lNumSplits: LongInt;

public
{ Uses default constructor. All data fields are
initialized to zero. }

procedure Stop; override;
procedure Reset; override;
function ElapsedTime: Double; override;
class procedure CalibrateOverhead;
class function OverheadForStop: Double;
class function OverheadForSplit: Double;
class procedure SetOverheadForStop

(dNewOverheadForStop: Double);
class procedure SetOverheadForSplit

(dNewOverheadForSplit:Double);
end;

procedure Register;

implementation

var
{ Class variables shared by all instances of

TProfilingStopWatch. }
dOverheadForStop: Double;
dOverheadForSplit: Double;

function TStopWatch.IsRunning: Boolean;
begin

result := TimerIsRunning;
end;
SEPTEMBER 1995
procedure TStopWatch.Start;
begin

if TimerIsRunning then
{ do nothing }

else
begin
dStartTime := VTD_GetTime;
TimerIsRunning := True;
end;

end;

procedure TStopWatch.Stop;
begin

{ Stop the timer and update the accumulator. }
if TimerIsRunning then

begin
dCurrTime := VTD_GetTime;
dAccumTime := dAccumTime + (dCurrTime - dStartTime);
TimerIsRunning := False;

end
else

; { do nothing }
end;

procedure TStopWatch.Reset;
begin

{ Stop the timer and reset the accumulator. }
TimerIsRunning := False;
dAccumTime := 0.0;

end;

function TStopWatch.ElapsedTime: Double;

begin

{ Return the elapsed time in seconds. }
if TimerIsRunning then

begin
{ If the timer is running, return the current

"split" time. }
dCurrTime := VTD_GetTime;
result := dAccumTime + (dCurrTime - dStartTime);

end
else

result := dAccumTime;
end;

procedure TProfilingStopWatch.Stop;
begin

{ Stop the timer and update the accumulator. }
if TimerIsRunning then

begin
dCurrTime := VTD_GetTime;
dAccumTime := dAccumTime + (dCurrTime - dStartTime)

- dOverheadForStop -
lNumSplits*dOverheadForSplit;

TimerIsRunning := False;
end

else
; { do nothing }

end;

procedure TProfilingStopWatch.Reset;
begin

{ Stop the timer and reset the accumulator. }
Delphi INFORMANT ▲ 46

On the Cover
dAccumTime := 0.0;
lNumSplits := 0;
TimerIsRunning := False;

end;

function TProfilingStopWatch.ElapsedTime: Double;
begin

{ Return the elapsed time in seconds. }
if TimerIsRunning then

begin
{ If the timer is running, return the current

"split" time. }
dCurrTime := VTD_GetTime;
inc(lNumSplits);
result := dAccumTime + (dCurrTime - dStartTime)

- lNumSplits*dOverheadForSplit;
end

else
result := dAccumTime;

end;

class function TProfilingStopWatch.OverheadForStop: Double;
begin

result := dOverheadForStop;
end;

class function TProfilingStopWatch.OverheadForSplit:
Double;
begin

result := dOverheadForSplit;
end;

class procedure TProfilingStopWatch.SetOverheadForStop
(dNewOverheadForStop: Double);

begin
dOverheadForStop := dNewOverheadForStop;

end;

class procedure TProfilingStopWatch.SetOverheadForSplit
(dNewOverheadForSplit: Double);

begin
dOverheadForSplit := dNewOverheadForSplit;

end;

class procedure TProfilingStopWatch.CalibrateOverhead;
SEPTEMBER 1995
{ Measure the overhead of starting and stopping the
stopwatch. }

const
NumCalls = 100;

var
CalibrationWatch: TProfilingStopWatch;
dSplitTime: Double;
i: Integer;

begin
CalibrationWatch := TProfilingStopWatch.Create(nil);
dOverheadForStop := 0.0;
dOverheadForSplit := 0.0;

{ Measure the overhead of stopping the watch. }
CalibrationWatch.Reset;
for i := 1 to NumCalls do

begin
CalibrationWatch.Start;
CalibrationWatch.Stop;

end;
dOverheadForStop :=

CalibrationWatch.ElapsedTime / NumCalls;

{ Measure the overhead of reading a split time. }
CalibrationWatch.Reset;
CalibrationWatch.Start;
for i := 1 to NumCalls do

dSplitTime := CalibrationWatch.ElapsedTime;
CalibrationWatch.Stop;
dOverheadForSplit := (CalibrationWatch.ElapsedTime -

dOverheadForStop) / NumCalls;
CalibrationWatch.Free;

end;

procedure Register;
begin

RegisterComponents('System',[TStopWatch]);
RegisterComponents('System',[TProfilingStopWatch]);

end;

initialization
TProfilingStopWatch.CalibrateOverhead;

end.

End Listing Three
Delphi INFORMANT ▲ 47

On the Cover
Begin Listing Four: The Main Unit
{ Example 1 -- How to use class TStopWatch. }
unit Main;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, StpWatch;

type
TMainForm = class(TForm)

StopWatch1: TStopWatch;
StopWatch2: TStopWatch;
btnStart1: TButton;
btnStop1: TButton;
btnReset1: TButton;
btnSplit1: TButton;
btnStart2: TButton;
btnStop2: TButton;
btnReset2: TButton;
btnSplit2: TButton;
lblTime1: TLabel;
lblTime2: TLabel;
cbRunning1: TCheckBox;
cbRunning2: TCheckBox;

Label1: TLabel;
Label2: TLabel;
procedure FormActivate(Sender: TObject);
procedure btnStart1Click(Sender: TObject);
procedure btnStop1Click(Sender: TObject);
procedure btnReset1Click(Sender: TObject);
procedure btnSplit1Click(Sender: TObject);
procedure btnStart2Click(Sender: TObject);
procedure btnStop2Click(Sender: TObject);
procedure btnReset2Click(Sender: TObject);
procedure btnSplit2Click(Sender: TObject);
procedure DisplayResults;

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{ $R *.DFM }

var
dTime1: Double;
dTime2: Double;

procedure TMainForm.FormActivate(Sender: TObject);
begin

dTime1 := 0.0;
dTime2 := 0.0;
DisplayResults;

end;

procedure TMainForm.btnStart1Click(Sender: TObject);
begin

StopWatch1.Start;
SEPTEMBER 1995
DisplayResults;
end;

procedure TMainForm.btnStart2Click(Sender: TObject);
begin

StopWatch2.Start;
DisplayResults;

end;

procedure TMainForm.btnStop1Click(Sender: TObject);
begin

StopWatch1.Stop;
dTime1 := StopWatch1.ElapsedTime;
DisplayResults;

end;

procedure TMainForm.btnStop2Click(Sender: TObject);
begin

StopWatch2.Stop;
dTime2 := StopWatch2.ElapsedTime;
DisplayResults;

end;

procedure TMainForm.btnReset1Click(Sender: TObject);
begin

StopWatch1.Reset;
dTime1 := StopWatch1.ElapsedTime;
DisplayResults;

end;

procedure TMainForm.btnReset2Click(Sender: TObject);
begin

StopWatch2.Reset;
dTime2 := StopWatch2.ElapsedTime;
DisplayResults;

end;

procedure TMainForm.btnSplit1Click(Sender: TObject);
begin

dTime1 := StopWatch1.ElapsedTime;
DisplayResults;

end;

procedure TMainForm.btnSplit2Click(Sender: TObject);
begin

dTime2 := StopWatch2.ElapsedTime;
DisplayResults;

end;

procedure TMainForm.DisplayResults;
begin

lblTime1.Caption := FormatFloat('0.000000',dTime1);
lblTime2.Caption := FormatFloat('0.000000',dTime2);
if StopWatch1.IsRunning then

cbRunning1.State := cbChecked
else

cbRunning1.State := cbUnchecked;
if StopWatch2.IsRunning then

cbRunning2.State := cbChecked
else

cbRunning2.State := cbUnchecked;
end;

end.

End Listing Four
Delphi INFORMANT ▲ 48

On the Cover
Begin Listing Five: TProfilingStopWatch
{ Example 2 -- How to use class TProfilingStopWatch. }
unit Main;

interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, StpWatch,
VTimerDv;

type
TfmMain = class(TForm)

{ Non-Visual components }
ProfilingStopWatch1: TProfilingStopWatch;
ProfilingStopWatch2: TProfilingStopWatch;
ProfilingStopWatch3: TProfilingStopWatch;
ProfilingStopWatch4: TProfilingStopWatch;
{ Visual components }
btnRun: TButton;
btnSetOverhead: TButton;
btnRecalibrate: TButton;
ebIterations: TEdit;
ebStopOverhead: TEdit;
ebSplitOverhead: TEdit;
lblTotalTime: TLabel;
lblTotalPct: TLabel;
lblEmptyTime: TLabel;
lblEmptyPct: TLabel;
lblWorkTime: TLabel;
lblWorkPct: TLabel;
lblOverhead: TLabel;
lblOverheadPct: TLabel;
lblRemainder: TLabel;
lblRemainderPct: TLabel;
lblStopOverhead: TLabel;
lblSplitOverhead: TLabel;
lblSplitTime: TLabel;
lblSplitPct: TLabel;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
Label10: TLabel;
Label11: TLabel;
procedure FormActivate(Sender: TObject);
procedure btnRunClick(Sender: TObject);
procedure btnSetOverheadClick(Sender: TObject);
procedure btnRecalibrateClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
fmMain: TfmMain;

implementation

{ $R *.DFM }
SEPTEMBER 1995
procedure TfmMain.FormActivate(Sender: TObject);
begin

ebIterations.Text := '10';
ebStopOverhead.Text :=

FormatFloat('0.0000000',
TProfilingStopWatch.OverheadForStop);

ebSplitOverhead.Text :=
FormatFloat('0.0000000',

TProfilingStopWatch.OverheadForSplit);
btnRun.SetFocus;
btnRunClick(self);

end;

procedure TfmMain.btnRunClick(Sender: TObject);
var

I, j, lIterations, lNumInnerStops,
lNumInnerSplits: LongInt;

X, dTotalTime, EmptyTime, WorkTime, Overhead,
dRemainder, dSplitTime: Double;

begin
lIterations := StrToInt(ebIterations.Text);

ProfilingStopWatch1.Reset;
ProfilingStopWatch2.Reset;
ProfilingStopWatch3.Reset;
ProfilingStopWatch4.Reset;
lNumInnerStops := 0;
lNumInnerSplits := 0;

{ Start the overall timer. }
ProfilingStopWatch1.Start;

{ Run ProfilingStopWatch2 in an empty loop. }
for i := 1 to lIterations do

begin
ProfilingStopWatch2.Start;
ProfilingStopWatch2.Stop;
lNumInnerStops := lNumInnerStops + 2;

end;

{ Run ProfilingStopWatch3 in a loop with splits. }
ProfilingStopWatch3.Start;
for i := 1 to lIterations do

{ Get split time }
dSplitTime := ProfilingStopWatch3.ElapsedTime;

ProfilingStopWatch3.Stop;
inc(lNumInnerStops);
lNumInnerSplits := lNumInnerSplits + lIterations;
{ Recalculate x by repeated multiplication. }
ProfilingStopWatch4.Start;
inc(lNumInnerStops);
X := 1.0;
for i := 1 to lIterations do

for j := 1 to i do
begin

X := sqrt(X);
X := ln(X);
X := exp(X);
X := X * X;

end;

ProfilingStopWatch4.Stop;
inc(lNumInnerStops);

{ Stop the overall timer. }
ProfilingStopWatch1.Stop;
Delphi INFORMANT ▲ 49

On the Cover
{ Format and display the results. }
dTotalTime := ProfilingStopWatch1.ElapsedTime;
dEmptyTime := ProfilingStopWatch2.ElapsedTime;
dSplitTime := ProfilingStopWatch3.ElapsedTime;
dWorkTime := ProfilingStopWatch4.ElapsedTime;
dOverhead :=

lNumInnerStops*TProfilingStopWatch.OverheadForStop +
lNumInnerSplits*TProfilingStopWatch.OverheadForSplit;

dRemainder := dTotalTime - dEmptyTime - dSplitTime -
dWorkTime - dOverhead;

lblTotalTime.Caption :=
FormatFloat('0.000000',dTotalTime);

lblEmptyTime.Caption :=
FormatFloat('0.000000',dEmptyTime);

lblSplitTime.Caption :=
FormatFloat('0.000000',dSplitTime);

lblWorkTime.Caption :=
FormatFloat('0.000000',dWorkTime);

lblOverhead.Caption :=
FormatFloat('0.000000',dOverhead);

lblRemainder.Caption :=
FormatFloat('0.000000',dRemainder);

lblTotalPct.Caption := '100.00';
lblEmptyPct.Caption :=

FormatFloat('0.00',100.0 * dEmptyTime/dTotalTime);
lblSplitPct.Caption :=

FormatFloat('0.00',100.0 * dSplitTime/dTotalTime);
lblWorkPct.Caption :=

FormatFloat('0.00',100.0 * dWorkTime/dTotalTime);
lblOverheadPct.Caption :=

FormatFloat('0.00',100.0 * dOverhead/dTotalTime);
lblRemainderPct.Caption :=

FormatFloat('0.00',100.0 * dRemainder/dTotalTime);
lblStopOverhead.Caption := FormatFloat('0.0000000',

TProfilingStopWatch.OverheadForStop);
lblSplitOverhead.Caption := FormatFloat('0.0000000',

TProfilingStopWatch.OverheadForSplit);
end;

procedure TfmMain.btnSetOverheadClick(Sender: TObject);
begin

TProfilingStopWatch.SetOverheadForStop
(StrToFloat(ebStopOverhead.Text));

TProfilingStopWatch.SetOverheadForSplit
(StrToFloat(ebSplitOverhead.Text));

lblStopOverhead.Caption := FormatFloat('0.0000000',
TProfilingStopWatch.OverheadForStop);

lblSplitOverhead.Caption := FormatFloat('0.0000000',
TProfilingStopWatch.OverheadForSplit);

end;

procedure TfmMain.btnRecalibrateClick(Sender: TObject);
begin

TProfilingStopWatch.CalibrateOverhead;
lblStopOverhead.Caption := FormatFloat('0.0000000',

TProfilingStopWatch.OverheadForStop);
lblSplitOverhead.Caption := FormatFloat('0.0000000',

TProfilingStopWatch.OverheadForSplit);
end;

end.

End Listing Five
SEPTEMBER 1995 Delphi INFORMANT ▲ 50

	Table of Contents
	Delphi Tools
	Delphi Accounting Package Released
	New HeadConv 1.0: C DLL Header Converter Expert for Delphi
	ProtoView Releases Delphi Tools
	New AccuSoft Image Format Library 5.0
	SilverWare Windows Communications Tool Kit Ships
	Crystal Announces 32-bit Windows Versions

	Newsline
	Delphi 32: Supports OCXes, OLE Automation, and More
	Borland Makes Profit in First Quarter
	ICG to Publish Oracle Informant
	Borland Developers Conference, London 1996 Announced
	Software World and Client/Server Developers to Meet in San Jose
	Borland Ships Visual dBASE 5.5 and Compiler
	10th Annual PC Expo in Chicago

	The TSlideBar Component
	The TSlideBar Component
	Focus! Focus!
	A Key Feature
	Build a Better Mouse Trap
	Painting the Town
	Being Resourceful
	Let’s Give ‘em a Hand!
	You’re Just Stringing Me Along
	Conclusion

	A Dynamic Toolbar
	How to Create a Toolbar
	The User Interface: A Form and Components
	Edit the MenuItems Property
	Making the Toolbar Dynamic
	Create the Toolbar Table
	Unit Variables
	The FormCreate Event Procedure
	GetButtonsFromTable
	Creating a New SpeedButton
	GenericSpeedButtonClick
	ShellExecute
	Staying On Top
	The FormClose Event Procedure
	Conclusion
	Listing One: Toolbar.PAS

	Leaving PB Behind
	Painters and Palettes
	PB Data Access, Events, and Coding
	Client/Server Data Access
	Delphi Data Access, Events, and Coding
	Conclusion

	Data Validation: Part II
	Table-Level Validation
	Field-Level Validation
	Validating Fields Using Properties
	Validating Fields from Event Handlers
	Form-Level Validation
	Conclusion

	Strings: Part II
	Stripping Blanks
	Date-Based File Names
	Using the Move and FillChar Functions
	Copy or Move It
	Moving On
	Conclusion

	A Stopwatch Component
	Unit VTIMERDV
	Class TStopWatch
	Example 1
	Class TProfilingStopWatch
	Example 2
	Conclusion
	Listing Two: The VTimerDV unit
	Listing Three: The StpWatch Unit
	Listing Four: The Main Unit
	Listing Five: TProfilingStopWatch

